Skip to main content
Log in

Synthesis and characterization of cancrinite-type zeolite, and its ionic conductivity study by AC impedance analysis

  • Colloid Chemistry and Electrochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The synthesis of cancrinite in the system NaOH-SiO2-Al2O3-NaHCO3-H2O was performed, according to methods described in the literature, in an autoclave under hydrothermal conditions at T = 473 K. The electrical properties of cancrinite-type zeolite pellets were investigated by complex impedance spectroscopy in the temperature range 465–800°C. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (1 Hz to 13 MHz). The real and imaginary parts of complex impedance trace semicircles in the complex plane are plotted. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The results of bulk electrical conductivity and its activation energy are presented. The modulus analysis suggests that the electrical transport processes in the material are very likely to be of electronic nature. Relaxation frequencies follow an Arrhenius behavior with activation energy values not comparable to those found for the electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Li, B. Xue, J. Chen, N. Guan, F. Zhang, D. Liu, and H. Feng, Appl. Catal. A: Gen. 292, 312–321 (2005).

    Article  CAS  Google Scholar 

  2. M. M. Mohamed, J. Mol. Catal. A: Chem. 211, 199 (2004).

    Article  CAS  Google Scholar 

  3. V. Valtchev and K. N. Bzhilov, J. Phys. Chem. B 108, 15587 (2004).

    Article  CAS  Google Scholar 

  4. P. V. Samant and J. B. Fernandes, J. Power Sources 125, 172 (2004).

    Article  CAS  Google Scholar 

  5. B. Libbya, W. H. Smyrla, and E. L. Cusslera, AlChEJ 49, 991 (2003).

    Article  Google Scholar 

  6. H. W. Langmi, A. Walton, M. M. Al-Maamouri, S. R. Johnson, D. Book, J. D. Speight, P. P. Edwards, I. Gameson, P. P. A. Anderson, and I. R. Harris, J. Alloys Compd. 356–357, 710 (2003).

    Article  Google Scholar 

  7. A. J. Hernandez-Maldonado, F. H. Yang, G. Qi, and R. T. Yang, Appl. Catal. B: Environ. 56, 111 (2005).

    Article  CAS  Google Scholar 

  8. Y. Cao, T. T. Zhuang, J. Yang, H. D. Liu, W. Huang, and J. H. Zhu, J. Phys. Chem. C 111(2), 538 (2007).

    Article  CAS  Google Scholar 

  9. K. Ben Saad, H. Hamzaoui, and M. M. Mohamed, Mater. Sci and Engin. B 139, 226 (2007).

    Article  Google Scholar 

  10. I. Hassan and H. D. Grundy, Can. Mineral. 29, 49 (1991).

    Google Scholar 

  11. Carlos F. Linares, S. Sanchez, C. U. de Navarro, K. Rodriguez, and M. R. Goldwasser, Micropor. Mesopor. Mater. 77, 215 (2005).

    Article  CAS  Google Scholar 

  12. R. M. Barrer and J. F. Cole, J. Chem. Soc. (A), 1516 (1970).

  13. H. D. Grundy and I. Hassan, Can.Mineral. 20, 239 (1982).

    CAS  Google Scholar 

  14. M. Barnes, J. Addai-Mensah, and A. Gerson, Coll. Surf. A: Physicochem. Eng. Aspects 157, 101 (1999).

    Article  CAS  Google Scholar 

  15. C. Liu, S. Li, K. Tu, and R. Xu, J. Chem. Soc., Chem.Comm., 1645 (1993).

  16. J.-Ch. Buhl, Thermochim. Acta 178, 19 (1991).

    Article  CAS  Google Scholar 

  17. J.-C. Buhl, F. Stief, M. Fechtelkord, T. M. Gesing, U. Taphorn, and C. Taake, J. Alloys Compd. 305, 93 (2000).

    Article  CAS  Google Scholar 

  18. JCPDS No. 1-077-1145.

  19. G. Hermeler, J. Ch. Buhl, and W. Hoffmann, Catal. Today 8, 415 (1991).

    Article  CAS  Google Scholar 

  20. R. M. Barrer and J. F. Cole, J. Chem. Soc. (A), 2475 (1968).

  21. E. M. Flaninger and H. Khatami, Adv. Chem. Series 16, 201 (1971).

    Google Scholar 

  22. M. D. Ingram, Phys. Chem. Glasses 28, 215 (1987).

    CAS  Google Scholar 

  23. D. C. Sinclair and A. R. West, J. Appli. Physics 66(8), 3850 (1989).

    Article  CAS  Google Scholar 

  24. J. T. C. Irvine, D. C. Sinclair, and A. R. West, Adv. Mater. 2, 138 (1990).

    Article  Google Scholar 

  25. S. Selvasekarapandian and M. Vijaykumar, Mater. Chem. Phys. 80, 29 (2003).

    Article  CAS  Google Scholar 

  26. J. R. MacDonald, Impedance Spectroscopy (John Wiley & Sons, New York, NY, USA, 1987).

    Google Scholar 

  27. S. Chatterjee, P. P. K. Mahapatra, R. N. Choudhary, and A. K. Thakur, Phys. Stat. Sol. (a) 201, 588 (2004).

    Article  CAS  Google Scholar 

  28. J. P ocharski and W. Wieczorek, Solid State. Ionics 28–30 (part 2), 979–982 (1988).

    Article  Google Scholar 

  29. S. Brahma, R. N. P. Choudhary, and A. K. Thakur, Phys. B Cond. Mat. 355, 188 (2005).

    Article  CAS  Google Scholar 

  30. A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983).

    Google Scholar 

  31. A. K. Jonscher, Nature 267, 673 (1977).

    Article  CAS  Google Scholar 

  32. P. Khatri, B. Behera, V. Srinivas, and R. N. P. Choudhary, Research Letters in Materials Science 2008, ID 746256 (2008); doi:10.1155/2008/746256.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kriaa.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriaa, A., Ben Saad, K. & Hamzaoui, A.H. Synthesis and characterization of cancrinite-type zeolite, and its ionic conductivity study by AC impedance analysis. Russ. J. Phys. Chem. 86, 2024–2032 (2012). https://doi.org/10.1134/S0036024412130158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024412130158

Keywords

Navigation