Skip to main content
Log in

Critical micelle concentration and self-aggregation of hexadecyltrimethylammonium bromide in aqueous glycine and glycylglycine solutions at different temperatures

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Conductivities, densities and ultrasonic speeds measurements of hexadecyltrimethylammonium bromide (HTAB) in aqueous solutions of glycine (Gly) and glycylglycine (Gly-Gly) have been made at various temperatures. The critical micelle concentration (CMC), the degree of ionization (β) of the micelles, standard free energy, enthalpy, and entropy of the micellization process (ΔG °m , ΔH °m , and ΔS °m ) for the present systems were estimated at different temperatures. The CMC values of HTAB in aqueous Gly and Gly-Gly were also evaluated by density and ultrasonic speed measurements. Apparent molar volumes, (V ϕ), apparent molar volumes at infinite dilution, (V °ϕ ), apparent molar compressibilities, (K ϕ), of HTAB in the pre- and post-micellar regions, and volume change on micellization (ΔV mϕ ) were also estimated. Large positive values of TΔS °m and small negative values of ΔH °m suggest that micellization process is driven primarily by entropy increase. The increase in ΔV mϕ and K ϕ with rise in temperature is indicative of less compact micellar structure of HTAB in presence of amino acid additives. These data suggest that amino acids are solubilised probably in the palisade layer of the micelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Moroi, Micelles, Theoritical and Applied Aspects (Plenum Press, New York, 1992).

    Google Scholar 

  2. A. Gonzalez-Perez, J. L. de Castillo, J. Czapkiewicz, and J. R. Rodriguez, J. Phys. Chem. B 105, 1720 (2001).

    Article  CAS  Google Scholar 

  3. S. K. Mehta, K. K. Bhasin, R. Chauhan, and S. Dham, Colloids Surf. A: Physicochem. Eng. Aspects 255, 153 (2005).

    Article  CAS  Google Scholar 

  4. R. De Lisi and S. Milioto, Chem. Soc. Rev. 4, 67 (1994).

    Article  Google Scholar 

  5. E. Tovitou, F. L. Schaffer, N. Dayan, F. Alhaiquem, and F. Riccieri, Int. J. Pharm. 103, 131 (1994).

    Article  Google Scholar 

  6. X. Qiu, W. Fang, Q. Lei, and R. Lin, J. Chem. Eng. Data 53, 942 (2008).

    Article  CAS  Google Scholar 

  7. J. Jansen, C. Treiner, C. Vaution, and F. Pmisieux, Int. J. Pharm. 10, 319 (1994).

    Google Scholar 

  8. J. Chen, S. Shimura, K. Kirimura, and S. Usami, Biosci.: Biotechnol. Biochem. 58, 773 (1994).

    Article  CAS  Google Scholar 

  9. S. K. Singh, A. Kunde, and N. Kishore, J. Chem. Thermodyn. 36, 7 (2004).

    Article  CAS  Google Scholar 

  10. M. J. Rosen, Surfactants and Interfacial Phenomena (Wiley-Interscience, 1989).

  11. R. G. Rayavarapu, C. Ungureanu, P. Krystek, T. G. van Leeuwen, and S. Manohar, Langmuir 26, 5050 (2010).

    Article  CAS  Google Scholar 

  12. A. A. Vanin, E. M. Piotrovskaya, and N. A. Smirnova, Russ. J. Phys. Chem. A 81, 1256 (2007).

    Article  CAS  Google Scholar 

  13. A. L. Lehninger, D. L. Nelson, and M. M. Cox, Principles of Biochemistry (Worth Publishers, USA, 1993).

    Google Scholar 

  14. A. Malliaris, J. Phys. Chem. 91, 6511 (1987).

    Article  CAS  Google Scholar 

  15. C. R. Snelling, Density of Water (g/ml) vs. Temperature (°C), Handbook of Chemistry and Physics, 53rd ed. (2008).

  16. A. K. Nain, A. Ali, and M. I. Alam, J. Chem. Thermodyn. 30, 1275 (1998).

    Article  CAS  Google Scholar 

  17. A. Ali, S. Hyder, and A. K. Nain, J. Mol. Liq. 79, 89 (1999).

    Article  CAS  Google Scholar 

  18. M. I. Aralaguppi, T. M. Aminabhavi, R. H. Balundgi, and S. S. Joshi, J. Phys. Chem. 95, 5299 (1991).

    Article  CAS  Google Scholar 

  19. K. S. Sharma, S. R. Patil, A. K. Rakshit, K. Glenn, M. Doiron, R. M. Palepu, and P. A. Hassan, J. Phys. Chem. B 108, 12804 (2004).

    Article  CAS  Google Scholar 

  20. P. Somasundaran, Encyclopedia of Surface and Colloid Science, 2nd ed. (Taylor & Francis, New York, 2006) Vol. 8, p. 6592.

    Google Scholar 

  21. D. F. Evans and H. Wennerstrom, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. (Wiley-VCH, USA, 1999).

    Google Scholar 

  22. G. B. Ray, S. Ghosh, and S. P. Moulik, J. Surfact. Deterg. 12, 131 (2009).

    Article  CAS  Google Scholar 

  23. R. C. Bazito and A. E. Seond Omar, Langmuir 18, 4362 (2002).

    Article  CAS  Google Scholar 

  24. A. K. Rakshit and B. Sharma, Colloid Polym. Sci. 28, 45 (2003).

    Article  Google Scholar 

  25. L. Yu, T. Lu, Y. X. Luan, J. Liu, and G. Y. Xu, Colloids Surf. A 257, 375 (2005).

    Article  Google Scholar 

  26. A. Ali and N. H. Ansari, J. Surfact. Deterg. 31, 441 (2010).

    Article  Google Scholar 

  27. R. Zana, J. Colloid Interface Sci. 78, 330 (1980).

    Article  CAS  Google Scholar 

  28. Z. N. Markina, L. P. Panicheva, and N. M. Zadymova, Colloid J. 59, 341 (1997).

    Google Scholar 

  29. P. Mukerjee, Adv. Coll. Interface Sci. 1, 242 (1967).

    Article  Google Scholar 

  30. R. Zana, in Cationic Surfactants: Physical Chemistry, Ed. by D. H. Rubingh and P. M. Holland (Dekker, New York, 1991). Ch. 2.

    Google Scholar 

  31. R. Zielinski, S. Ikeda, H. Nomura, and S. Kato, J. Chem. Soc. Faraday Trans. 84, 151 (1988).

    Article  CAS  Google Scholar 

  32. E. Kudryashov, T. Kapustina, S. Morrissey, V. Buckin, and K. Dawson, J. Colloid Interface Sci. 203, 59 (1998).

    Article  CAS  Google Scholar 

  33. S. K. Mehta, S. Chaudhary, K. K. Bhasin, R. Kumar, and M. Aratono, ColloidsSurf A: Physicochem. Eng. Aspects 304, 88 (2007).

    Article  CAS  Google Scholar 

  34. J. L. Del Castillo, J. Czapkiewicz, A. Gonzalez-Perez, and J. R. Rodriguez, Colloids Surf. A: Physicochem. Eng. Aspects 166, 161 (2000).

    Article  Google Scholar 

  35. A. Gonzalez-Perez, J. M. Ruso, G. Prieto, and F. Sarmiento, Colloid Polym. Sci. 282, 1133 (2004).

    Article  CAS  Google Scholar 

  36. K. S. Pitzer, Thermodynamics (Mc Graw-Hill. New York, 1995), p. 544.

    Google Scholar 

  37. F. J. Millero, Chem. Rev. 71, 147 (1971).

    Article  CAS  Google Scholar 

  38. T. S. Brun, H. Hoiland, and E. Vikingstad, J. Colloid Interface Sci. 63, 89 (1978).

    Article  CAS  Google Scholar 

  39. B. Tutaj, A. Gonzalez-Perez, J. Czapkiewicz, J. L. Del Castillo, and J. R. Rodriguez, J. Solution Chem. 30, 1101 (2002).

    Article  Google Scholar 

  40. H. L. Friedman and C. V. Krishnan, Water -A Comprehensive Treatise, Ed. by F. Franks (Plenum Press, New York, 1973), Vol. 3, Chap. 1.

    Google Scholar 

  41. A. K. Mishra and J. C. Ahluwalia, J. Phys. Chem. 88, 86 (1984).

    Article  CAS  Google Scholar 

  42. A. Gonzalez-Perez, J. L. Del Castillo, J. Czapkiewicz, and J. R. Rodriguez, J. Chem. Eng. Data 46, 709 (2001) [Colloid Polym. Sci. 282, 1133 (2004)].

    Article  CAS  Google Scholar 

  43. K. Gracie, D. Turner, and R. Palepu, Can. J. Chem. 74, 1616 (1996).

    Article  CAS  Google Scholar 

  44. J. Wang, Z. Yan, Y. Zhao, and F. Cui, J. Chem. Eng. Data 49, 1354 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Ali.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, A., Tasneem, S., Bidhuri, P. et al. Critical micelle concentration and self-aggregation of hexadecyltrimethylammonium bromide in aqueous glycine and glycylglycine solutions at different temperatures. Russ. J. Phys. Chem. 86, 1923–1929 (2012). https://doi.org/10.1134/S0036024412130031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024412130031

Keywords

Navigation