Skip to main content
Log in

The negative adsorption of chromium atoms on alloy-oxide film boundaries during oxidation in air and anodic passivation of Fe-Cr and Ni-Cr alloys

  • Physical Chemistry of Surface Phenomena
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Equilibrium of Cr atoms between the surface layer and bulk of a binary alloy was analyzed. The Gibbs adsorption equation was used to obtain the dependence of the adsorption activity of atoms in the surface layer on their activity in the bulk. An approximate thermodynamic method was used to calculate the adsorption of Fe (Ni) and Cr atoms in the surface layers of Fe-Cr and Ni-Cr alloys. According to calculations, there was negative adsorption, X Cr ≪ 1, in the surface layer of the alloys caused by a large difference between the Gibbs surface energies of Cr and Fe (or Ni). The negative adsorption of Cr shifted chemical reaction equilibria on the alloy-oxide film boundary both in oxidation in air and in anodic passivation, 3FeO (NiO) + 2Cr = Cr2O3 + 3Fe(Ni), toward oxide film enrichment in the FeO (or NiO) oxide. A unified method for calculating the composition of oxide films on alloys was used for both processes. The method was based on the use of the initial data on the Gibbs surface energy of metals constituting alloys. The calculated oxide film compositions were close to the experimental X-ray photoelectron spectroscopy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hauffe, Z. Metallkd. 44, 576 (1953).

    CAS  Google Scholar 

  2. B. Pieraggi, B. MacDougall, and R. A. Rapp, Corros. Sci. 47, 247 (2005).

    Article  CAS  Google Scholar 

  3. C. J. Wagner, Z. Phys. Chem. 21, 25 (1933).

    Google Scholar 

  4. S. Mrovets and T. Verber, Modern Heat_Resistant Materials. The Manual (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  5. C. J. Wagner, J. Electroch. Soc. 103, 627 (1956).

    Article  CAS  Google Scholar 

  6. Yu. Ya. Andreev, Zh. Fiz. Khim. 81, 1106 (2007) [Russ. J. Phys. Chem. 81, 967 (2007)].

    Google Scholar 

  7. Yu. Ya. Andreev and A. A. Shumkin, Zashch. Met. 42, 239 (2006).

    Google Scholar 

  8. Yu. Ya. Andreev, Zh. Fiz. Khim. 72, 529 (1998) [Russ. J. Phys. Chem. 72, 447 (1998)].

    CAS  Google Scholar 

  9. Yu. Ya. Andreev, Electrochim. Acta 43, 2627 (1998).

    Article  CAS  Google Scholar 

  10. Yu. Ya. Andreev, Zh. Fiz. Khim. 74, 913 (2000) [Russ. J. Phys. Chem. 74, 808 (2000)].

    CAS  Google Scholar 

  11. Yu. Ya. Andreev, Zh. Fiz. Khim. 76, 338 (2002) [Russ. J. Phys. Chem. 76, 274 (2002)].

    CAS  Google Scholar 

  12. A. W. Adamson, The Physical Chemistry of Surfaces, 4th ed. (Mir, Moscow, 1979; Wiley, New York, 1982).

    Google Scholar 

  13. A. A. Zhukhovitskii, Zh. Fiz. Khim. 18(5–6), 214 (1944).

    CAS  Google Scholar 

  14. E. A. Guggengeim, Trans. Faraday Soc. 41, 150 (1945).

    Article  Google Scholar 

  15. R. Defay, I. Prigogine, A. Bellemans, and D. H. Everett, Surface Tension and Adsorption (Wiley, New York, 1966).

    Google Scholar 

  16. S. H. Overbury, P. A. Bertrand, and G. A. Somorjai, Chem. Rev. 75, 547 (1975).

    Article  CAS  Google Scholar 

  17. W. R. Tyson and W. A. Miller, Surf. Sci. 62, 267 (1977).

    Article  CAS  Google Scholar 

  18. Yu. Ya. Andreev, Zh. Fiz. Khim. 79, 239 (2005) [Russ. J. Phys. Chem. 79, 179 (2005)].

    Google Scholar 

  19. L. Vitos, A. V. Ruban, and H. L. Skriver, Surf. Sci. 411, 186 (1998).

    Article  CAS  Google Scholar 

  20. Yu. Ya. Andreev and A. E. Kutyrev, Zh. Fiz. Khim. 74, 1862 (2000) [Russ. J. Phys. Chem. 74, 1690 (2000)].

    CAS  Google Scholar 

  21. K. J. Smitles, Handbook of Metals (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  22. A. I. Zaitsev, M. A. Zemchenko, and B. M. Mogutnov, Zh. Fiz. Khim. 64, 1195 (1990).

    CAS  Google Scholar 

  23. Y. Y. Chuang and Y. A. Chang, Z. Metallkd. 77, 460 (1986).

    CAS  Google Scholar 

  24. Yu. Ya. Andreev, E. A. Skryleva, I. A. Safonov, and V. V. Dushik, Fiz. Khim. Poverkh. Zashch. Mater. 45 (2009, in press).

  25. Yu. Ya. Andreev, E. A. Skryleva, and I. A. Safonov, Fiz. Khim. Poverkh. Zashch. Mater. 45 (2009, in press).

  26. A. M. Sukhotin, Passivity and Corrosion of Metals (Khimiya, Leningrad, 1971) [in Russian].

    Google Scholar 

  27. K. Asami, K. Hashimoto, and S. Shimodaira, Corros. Sci. 18, 151 (1978).

    Article  CAS  Google Scholar 

  28. K. Leigraf, G. Khul’tkvist, I. Olefjerd, et al., Zashch. Met. 15, 395 (1979).

    Google Scholar 

  29. S. Haupt and H.-H. Strehblow, Corros. Sci. 37, 43 (1995).

    Article  CAS  Google Scholar 

  30. P. Keller and H.-H. Strehblow, Corros. Sci. 46, 1939 (2004).

    Article  CAS  Google Scholar 

  31. R. Kirchheim, B. Heine, H. Fishmeister, et al., Corros. Sci. 29, 899 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Ya. Andreev.

Additional information

Original Russian Text © Yu.Ya. Andreev, I.A. Safonov, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 10, pp. 1953–1959.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, Y.Y., Safonov, I.A. The negative adsorption of chromium atoms on alloy-oxide film boundaries during oxidation in air and anodic passivation of Fe-Cr and Ni-Cr alloys. Russ. J. Phys. Chem. 83, 1768–1774 (2009). https://doi.org/10.1134/S0036024409100252

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024409100252

Keywords

Navigation