Skip to main content
Log in

Thermal inactivation of alkali phosphatases under various conditions

  • Biophysical Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The thermal inactivation of alkali phosphatases from bacteria Escherichia coli (ECAP), bovine intestines (bovine IAP), and chicken intestines (chicken IAP) was studied in different buffer solutions and in the solid state. The conclusion was made that these enzymes had maximum stability in the solid state, and, in a carbonate buffer solution, their activity decreased most rapidly. It was found that the bacterial enzyme was more stable than animal phosphatases. It was noted that, for ECAP, four intermediate stages preceded the loss of enzyme activity, and, for bovine and chicken IAPs, three intermediate stages were observed. The activation energy of thermal inactivation of ECAP over the range 25–70°C was determined to be 80 kJ/mol; it corresponded to the dissociation of active dimers into inactive monomers. Higher activation energies (∼200 kJ/mol) observed at the initial stage of thermal inactivation of animal phosphatases resulted from the simultaneous loss of enzyme activity caused by dimer dissociation and denaturation. It was shown that the activation energy of denaturation of monomeric animal alkali phosphatases ranged from 330 to 380 kJ/mol depending on buffer media. It was concluded that the inactivation of solid samples of alkali phosphatases at 95°C was accompanied by an about twofold decrease in the content of β structures in protein molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. McComb, G. N. Bowers, and S. Posen, Alkaline Phosphatases (Plenum, New York, 1979).

    Google Scholar 

  2. E. E. Kim and H. W. Wyckoff, Clin. Chim. Acta 186, 175 (1990).

    Article  CAS  Google Scholar 

  3. M. H. le Du, T. Stigbrand, M. J. Taussig, et al., J. Biol. Chem. 276, 9158 (2001).

    Article  Google Scholar 

  4. M. de Backer, S. McSweeney, H. B. Rasmussen, et al., J. Mol. Biol. 318, 1265 (2002).

    Article  Google Scholar 

  5. E. Wang, D. Koutsioulis, H.-K. S. Leiros, et al., J. Mol. Biol. 366, 1318 (2007).

    Article  CAS  Google Scholar 

  6. O. M. Poltorak and E. S. Chukhrai, Zh. Fiz. Khim. 69(2), 330 (1995).

    CAS  Google Scholar 

  7. L. F. Atyaksheva, O. M. Poltorak, E. S. Chukhrai, and S. A. Fedosov, Zh. Fiz. Khim. 80(4), 733 (2006) [Russ. J. Phys. Chem. 80 (4), 630 (2006)].

    Google Scholar 

  8. O. M. Poltorak and E. S. Chukhrai, Itogi Nauki Tekh., Ser. Biotekhnol. 5, 50 (1986).

    Google Scholar 

  9. O. M. Poltorak, E. S. Chukhray, I. Y. Torshin, et al., J. Mol. Catal. B: Enzym. 7, 165 (1999).

    Article  CAS  Google Scholar 

  10. O. M. Poltorak, E. S. Chukhray, A. A. Kozlenkov, et al., J. Mol. Catal. B: Enzym. 7, 157 (1999).

    Article  CAS  Google Scholar 

  11. S. Fadiloglu, O. Erkmen, and G. Sekeroglu, J. Food Processing Preservation 30(3), 258 (2006).

    Article  CAS  Google Scholar 

  12. A. E. Lyubarev and B. I. Kurganov, Usp. Biol. Khim. 40, 43 (2000).

    CAS  Google Scholar 

  13. L. Zhang, R. Buchet, and G. Azzar, Biochem. J. 392, 407 (2005).

    Article  CAS  Google Scholar 

  14. V. M. Mazhul’ and S. Zh. Kananovich, Biofizika 51(3), 418 (2006) [Biophysics 51 (3), 364 (2006)].

    Google Scholar 

  15. D. M. Byler and H. Susi, Biopolymers 25, 469 (1986).

    Article  CAS  Google Scholar 

  16. L. de la Fourniere, O. Nosjean, R. Buchet, and B. Roux, Biochim. Biophys. Acta 1248, 186 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Poltorak.

Additional information

Original Russian Text © L.F. Atyaksheva, B.N. Tarasevich, E.S. Chukhrai, O.M. Poltorak, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 2, pp. 391–396.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atyaksheva, L.F., Tarasevich, B.N., Chukhrai, E.S. et al. Thermal inactivation of alkali phosphatases under various conditions. Russ. J. Phys. Chem. 83, 318–323 (2009). https://doi.org/10.1134/S0036024409020307

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024409020307

Keywords

Navigation