Skip to main content
Log in

The role played by the amino and carboxyl groups in the formation of the geometric and electronic structure of phenoxy substituted cyclophosphazenes

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A, Focus on Chemistry Aims and scope Submit manuscript

Abstract

A quantum-topological analysis of the electron density calculated by the density functional theory method in the B3LYP/6-31G(d,p) approximation was performed to determine and quantitatively characterize four types of noncovalent interactions in mono-and disubstituted 4-aminophenoxy-and 4-carboxyphenoxycyclotriphosphazenes P3N3Cl5OC6H4NH2, P3N3Cl4(OC6H4NH2)2, P3N3Cl5OC6H4COOH, and P3N3Cl4(OC6H4COOH)2. These are C-H…N hydrogen bonds between a nitrogen atom of the phosphazene ring and a hydrogen atom of the benzene ring, C-H…C interactions between a carbon atom of one phenoxy group and a hydrogen atom of the other such group (C-H…π interactions), N-H…N interactions between nitrogen and hydrogen atoms of neighboring amino groups, and C-O…C interactions between oxygen atoms of neighboring carboxyl groups. This system of noncovalent bonding interactions determines the mutual orientation of oxyphenyl fragments. The total energy of interatomic contacts estimated from the local potential energy of electrons at the corresponding critical bond points is larger for the amino than for the carboxyl group. It follows that the amino group has the strongest effect on the mutual orientation of oxyphenyl fragments. The effect of the carboxyl group is weaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Allcock, Phosphorus-Nitrogen Compounds: Cyclic, Linear, and High Polymeric Systems (Academic, New York, 1972; Mir, Moscow, 1976).

    Google Scholar 

  2. H. R. Allcock, D. C. Ngo, and M. Parvez, J. Am. Chem. Soc. 113, 2628 (1991).

    Article  CAS  Google Scholar 

  3. V. Chandrasekhar and S. Nagenran, Chem. Soc. Rev. 30, 193 (2001).

    Article  CAS  Google Scholar 

  4. H. R. Allcock, P. E. Austin, and T. F. Rakowsky, Macromolecules 14, 1622 (1981).

    Article  CAS  Google Scholar 

  5. D. Alekperov, T. Shirosaki, T. Sakurai, et al., Polymer J. 35(5), 417 (2003).

    Article  CAS  Google Scholar 

  6. D. Alekperov, T. Shirosaki, T. Sakurai, et al., Polymer Prepn. Jpn. 51(14), 3611 (2002).

    Google Scholar 

  7. G. Popova, V. Kireev, A. Spitsyn, et al., Mol. Cryst. Liq. Cryst. 390, 91 (2003).

    Article  CAS  Google Scholar 

  8. M. A. Vantsyan, M. F. Bobrov, G. V. Popova, et al., Vysokomol. Soedin., Ser. A 49(3), 533 (2007) [Polymer Science, Ser. A 49 (3), 355 (2007)].

    CAS  Google Scholar 

  9. M. F. Bobrov, G. V. Popova, and V. G. Tsirel’son, Zh. Fiz. Khim. 82(8), 1458 (2008).

    Google Scholar 

  10. R. F. Bader, Atoms in Molecules: A Quantum Theory, Vol. 22 of International Series of Monographs on Chemistry (Clarendon, Oxford, U.K., 1990; Mir, Moscow, 2001).

    Google Scholar 

  11. A. A. Granovsky, http://classic.chem.msu.su/gran/gamess/index.html.

  12. M. W. Schmidt and K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  13. F. W. Biegler-Konig, R. F. W. Bader, and T.-H. Tang, J. Comput. Chem. 3, 317 (1982).

    Article  Google Scholar 

  14. M. F. Bobrov and M. V. Yakovlev, in Advances in Chemistry and Chemical Technology, (Ross. Khim.-Tekhnol. Univ. im. D. I. Mendeleeva, Moscow, 2000), Vol. 14, Part 3, p. 61 [in Russian].

    Google Scholar 

  15. http://www.aim2000.de.

  16. H. Sabzyan and Z. Kalantar, J. Mol. Struct. (Theochem) 663, 149 (2003).

    Article  CAS  Google Scholar 

  17. M. Breza, J. Mol. Struct. (Theochem) 505, 169 (2000).

    Article  CAS  Google Scholar 

  18. A. M. Pendas, A. Costales, and V. J. Luana, Phys. Chem. 102, 6937 (1998).

    Google Scholar 

  19. V. Luana, A. M. Pendas, A. Costales, et al., J. Phys. Chem. 105, 5280 (2001).

    CAS  Google Scholar 

  20. M. F. Bobrov, G. V. Popova, and V. G. Tsirel’son, Zh. Fiz. Khim. 80(2), 682 (2006) [Russ. J. Phys. Chem. 80 (4), 584 (2006)].

    Google Scholar 

  21. T. Steiner, J. Chem. Soc., Chem. Commun., p. 95 (1995).

  22. G. R. Desiraju, Acc. Chem. Res. 29, 441 (1996).

    Article  CAS  Google Scholar 

  23. J. J. Novoa and F. Mota, Chem. Phys. Lett. 318(4–5), 345 (2000).

    Article  CAS  Google Scholar 

  24. T. Steiner, Angew. Chem., Int. Ed. Engl. 41, 76 (2002).

    Google Scholar 

  25. D. B. DuPre, J. Phys. Chem. A 109(4), 622 (2005).

    Article  CAS  Google Scholar 

  26. E. A. Zhurova, V. G. Tsirelson, A. I. Stash, and A. A. Pinkerton, J. Am. Chem. Soc. 124, 4574 (2002).

    Article  CAS  Google Scholar 

  27. A. H. Pakiari and K. Eskandari, J. Mol. Struct. (Theochem) 806, 1 (2007).

    Article  CAS  Google Scholar 

  28. T. M. Klapotke, P. Mayer, A. Schulz, and J. J. Weigand, J. Am. Chem. Soc. 127(7), 2032 (2005).

    Article  Google Scholar 

  29. E. Espinosa, I. Alkorta, I. Rozas, et al., Chem. Phys. Lett. 336(5–6), 457 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Bobrov.

Additional information

Original Russian Text © M.F. Bobrov, V.G. Tsirel’son, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 12, pp. 2332–2340.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobrov, M.F., Tsirel’son, V.G. The role played by the amino and carboxyl groups in the formation of the geometric and electronic structure of phenoxy substituted cyclophosphazenes. Russ. J. Phys. Chem. 82, 2103–2110 (2008). https://doi.org/10.1134/S0036024408120236

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024408120236

Keywords

Navigation