Skip to main content
Log in

The solubility of ozone and kinetics of its chemical reactions in aqueous solutions of sodium chloride

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A, Focus on Chemistry Aims and scope Submit manuscript

Abstract

The solubility of ozone and the kinetics of its decomposition and interaction with chloride ions in a 1 M aqueous solution of NaCl at 20°C and pH 8.4–10.8 were studied. The ratio between the concentration of O3 in solution and the gas phase was found to be 0.16 at pH 8.4–9.8. The concentration of dissolved ozone decreased sharply as pH increased to 10.8 because of a substantial increase in the rate of its decomposition. It was observed for the first time that the interaction of O3 with Cl in alkaline media resulted in the formation of ClO 3 chlorate ions. The dependence of the rate of formation of ClO 3 on pH was determined; its maximum value was found to be 9.6 × 10−6 mol l−1 min−1 at pH 10.0 and the concentration of ozone at the entrance of the reactor 30.0 g/m3. A spectrophotometric method for the determination of chlorate ions (concentrations 1 × 10−5−3 × 10−4 M) in aqueous solutions was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bocci, Ozone. A New Medical Drug (Springer, Dordrecht, 2005).

    Google Scholar 

  2. U. von Gunten, Water Res. 37, 1469 (2003).

    Article  CAS  Google Scholar 

  3. V. V. Lunin, A. V. Levanov, I. V. Kuskov, et al., Zh. Fiz. Khim. 77(4), 657 (2003) [Russ. J. Phys. Chem. 77 (4), 580 (2003)].

    CAS  Google Scholar 

  4. A. V. Levanov, I. V. Kuskov, A. V. Zosimov, et al., Kinet. Katal. 44(6), 810 (2003) [Kinet. Catal. 44 (6), 740 (2003)].

    Article  Google Scholar 

  5. A. V. Levanov, I. V. Kuskov, K. B. Koiaidarova, et al., Kinet. Katal. 46(1), 147 (2005) [Kinet. Catal. 46 (1), 138 (2005)].

    Article  CAS  Google Scholar 

  6. A. V. Levanov, I. V. Kuskov, K. B. Koiaidarova, et al., Kinet. Katal. 47(5), 705 (2006) [Kinet. Catal. 47 (5), 682 (2006)].

    Article  CAS  Google Scholar 

  7. A. V. Levanov, I. V. Kuskov, E. E. Antipenko, and V. V. Lunin, Zh. Fiz. Khim. 82(7), 1275 (2008).

    Google Scholar 

  8. W. R. Haag and J. Hoigné, Water Res. 17(10), 1397 (1983).

    Article  CAS  Google Scholar 

  9. J. Hoigné, H. Bader, W. R. Haag, and J. Staehelin, Water Res. 19(8), 993 (1985).

    Article  Google Scholar 

  10. I. M. Kolthoff, R. Belcher, V. A. Stenger, and G. Matsuyama, Volumetric Analysis (Interscience, New York, 1957; Goskhimizdat, Moscow, 1961).

    Google Scholar 

  11. H. Ditz, Chem. Z. 25(69), 727 (1901).

    CAS  Google Scholar 

  12. E. Rupp, Z. Anal. Chem. 56(12), 580 (1917).

    Article  CAS  Google Scholar 

  13. Y. Ikeda, T. Tang, and G. Gordon, Anal. Chem. 56(1), 71 (1984).

    Article  CAS  Google Scholar 

  14. T. X. Wang, M. D. Kelley, J. N. Cooper, et al., Inorg. Chem. 33(25), 5872 (1994).

    Article  CAS  Google Scholar 

  15. E. Rischbieter, H. Stein, and A. Schumpe, J. Chem. Eng. Data 45(2), 338 (2000).

    Article  CAS  Google Scholar 

  16. J. L. Sotelo, F. J. Beltrán, F. J. Benitez, and J. Beltrán-Heredia, Water Res. 23(10), 1239 (1989).

    Article  CAS  Google Scholar 

  17. E. Briner and E. Perrottet, Helv. Chim. Acta 22(2), 397 (1939).

    Article  CAS  Google Scholar 

  18. Y. Ku, W.-J. Su, and Y.-Sh. Shen, Ind. Eng. Chem. Res. 35(10), 3369 (1996).

    Article  CAS  Google Scholar 

  19. U. von Gunten, Water Res. 37, 1443 (2003).

    Article  CAS  Google Scholar 

  20. G. V. Buxton and M. S. Subhani, J. Chem. Soc., Faraday Trans. 1 68, 947 (1972).

    Article  CAS  Google Scholar 

  21. U. K. Kläning, K. Sehested, and J. Holcman, J. Phys. Chem. 89(5), 760 (1985).

    Article  Google Scholar 

  22. G. G. Jayson, B. J. Parsons, and A. J. Swallow, J. Chem. Soc., Faraday Trans. 1 69, 1597 (1973).

    Article  CAS  Google Scholar 

  23. A. E. Grigor’ev, I. E. Makarov, and A. K. Pikaev, High Energy Chem. 21, 99 (1987).

    Google Scholar 

  24. G. V. Buxton, M. Bydder, and G. A. Salmon, Phys. Chem. Chem. Phys. 2, 237 (2000).

    Article  CAS  Google Scholar 

  25. I. V. Kuskov, A. V. Levanov, E. E. Antipenko, and V. V. Lunin, Abstracts of Papers, I All-Russia Conference “Ozone and Other Environmently Friendly Oxidizers: Science and Technology” (Mosk. Gos. Univ., Moscow, 2005), p. 169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Levanov.

Additional information

Original Russian Text © A.V. Levanov, I.V. Kuskov, E.E. Antipenko, V.V. Lunin, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 12, pp. 2271–2276.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levanov, A.V., Kuskov, I.V., Antipenko, E.E. et al. The solubility of ozone and kinetics of its chemical reactions in aqueous solutions of sodium chloride. Russ. J. Phys. Chem. 82, 2045–2050 (2008). https://doi.org/10.1134/S0036024408120133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024408120133

Keywords

Navigation