Skip to main content
Log in

Simulation of the supramolecular organization and permittivity of methanol over a wide range of state parameters, including the supercritical region

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A, Focus on Chemistry Aims and scope Submit manuscript

Abstract

Supramolecular structure models were suggested to describe the permittivity of methanol over a wide range of state parameters from the melting point to the supercritical region. The models were based on the quasi-chemical model of a nonideal associated solution. The permittivity and dipole correlation factor of methanol were calculated over the temperature range 177–593 K at pressures from 0.1 to 20 MPa for two supramolecular structure models. Methanol molecules formed chain associates according to the first model and chain and cyclic aggregates according to the second one. Both models successfully described the experimental data on pure methanol, but the inclusion of cyclic aggregates was necessary for consistency with models of methanol solutions in various solvents over the entire composition range. The thermodynamic and structural parameters of supramolecular aggregates were calculated. The particle-size distributions of aggregates and other integral and differential characteristics of association over the whole range of fluid methanol state parameters were determined for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Durov, J. Mol. Liq. 103–104, 41 (2003).

    Article  Google Scholar 

  2. V. A. Durov, Pure Appl. Chem. 76(1), 1 (2004).

    Article  CAS  Google Scholar 

  3. V. A. Durov, in Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories, and Simulations, Ed. by J. Samios and V. A. Durov, Vol. 133 of NATO Science Series. II. Mathematics, Physics, and Chemistry (Kluwer, Dordrecht, 2004), p. 17.

    Google Scholar 

  4. V. A. Durov, in Concentrated and Saturated Solutions, Ed. by A. M. Kutepov (Nauka, Moscow, 2002), p. 170 [in Russian].

    Google Scholar 

  5. V. A. Durov, J. Mol. Liq. 118(1–3), 101 (2005).

    Article  CAS  Google Scholar 

  6. V. A. Durov and I. Yu. Shilov, J. Chem. Soc., Faraday Trans. 92(19), 3559 (1996).

    Article  CAS  Google Scholar 

  7. V. A. Durov and I. Yu. Shilov, J. Mol. Liq. 92(3), 165 (2001).

    Article  CAS  Google Scholar 

  8. V. A. Durov, O. G. Tereshin, and I. Yu. Shilov, J. Mol. Liq. 110(1–3), 69 (2004).

    Article  CAS  Google Scholar 

  9. V. A. Durov, O. G. Tereshin, and I. Yu. Shilov, J. Mol. Liq. 121(2–3), 127 (2005).

    Article  CAS  Google Scholar 

  10. V. A. Durov, O. G. Tereshin, and I. Yu. Shilov, Fluid Phase Equilib. 239(1), 35 (2006).

    Article  CAS  Google Scholar 

  11. V. A. Durov and O. G. Tereshin, J. Phys. Chem. B 110(16), 8441 (2006).

    Article  CAS  Google Scholar 

  12. M. Magini, G. Paschina, and G. Piccaluga, J. Chem. Phys. 77(4), 2051 (1982).

    Article  CAS  Google Scholar 

  13. A. H. Narten and A. Habenschuss, J. Chem. Phys. 80(7), 3387 (1984).

    Article  CAS  Google Scholar 

  14. T. Weitkamp, J. Neuefeind, H. E. Fischer, and M. D. Zeidler, Mol. Phys. 98(3), 125 (2000).

    Article  CAS  Google Scholar 

  15. D. G. Montague and J. C. Dore, Mol. Phys. 57(5), 1035 (1986).

    Article  CAS  Google Scholar 

  16. Y. Tanaka, N. Ohtomo, and K. Arakawa, Bull. Chem. Soc. Jpn. 58(1), 270 (1985).

    Article  CAS  Google Scholar 

  17. T. Yamaguchi, K. Hidaka, and A. K. Soper, Mol. Phys. 97(4), 603 (1999).

    Article  CAS  Google Scholar 

  18. A. K. Adya, L. Bianchi, and C. J. Wormald, J. Chem. Phys. 112(9), 4231 (2000).

    Article  CAS  Google Scholar 

  19. W. A. P. Luck and W. Ditter, Ber. Bunsen-Ges. Phys. Chem. 72(3), 365 (1968).

    CAS  Google Scholar 

  20. J. F. Mammone, S. K. Sharma, and M. Nicol, J. Phys. Chem. 84(23), 3130 (1980).

    Article  CAS  Google Scholar 

  21. E. M. Schulman, D. W. Dwyer, and D. C. Doetschman, J. Phys. Chem. 94(18), 7308 (1990).

    Article  CAS  Google Scholar 

  22. T. Yamaguchi, J. Mol. Liq. 78(1–2), 43 (1998).

    Article  CAS  Google Scholar 

  23. T. Yamaguchi, C. J. Benmore, and A. K. Soper, J. Chem. Phys. 112(20), 8976 (2000).

    Article  CAS  Google Scholar 

  24. S. J. Barlow, G. V. Bondarenko, Y. E. Gorbaty, et al., J. Phys. Chem. A 106(43), 10452 (2002).

    Google Scholar 

  25. D. S. Bulgarevich, K. Otake, T. Sako, et al., J. Chem. Phys. 116(5), 1995 (2002).

    Article  CAS  Google Scholar 

  26. M. Besnard, T. Tassaing, Y. Danten, et al., J. Mol. Liq. 125(2–3), 88 (2006).

    CAS  Google Scholar 

  27. T. Ebukuro, A. Takami, Y. Oshima, et al., J. Supercrit. Fluids 15(1), 73 (1999).

    Article  CAS  Google Scholar 

  28. K. Saitow and J. Sasaki, J. Chem. Phys. 122, 104502 (2005).

    Google Scholar 

  29. D. S. Bulgarevich, T. Sako, T. Sugeta, et al., J. Chem. Phys. 111(9), 4239 (1999).

    Article  CAS  Google Scholar 

  30. M. M. Hoffmann and M. S. Conradi, J. Phys. Chem. B 102(1), 263 (1998).

    Article  CAS  Google Scholar 

  31. S. Bai and C. R. Yonker, J. Phys. Chem. A 102(45), 8641 (1998).

    Article  CAS  Google Scholar 

  32. N. Asahi and Y. Nakamura, J. Chem. Phys. 109(22), 9879 (1998).

    Article  CAS  Google Scholar 

  33. R. Reid, J. M. Prausnitz, and T. Sherwood, The Properties of Gases and Liquids, (McGraw-Hill, New York, 1977; Khimiya, Leningrad, 1982).

    Google Scholar 

  34. E. Minami and S. Saka, Fuel 85(17–18), 2479 (2006).

    Article  CAS  Google Scholar 

  35. H. Jie, H. Ke, Q. Wenjie, and Z. Zibin, Polym. Degrad. Stab. 91(10), 2527 (2006).

    Article  CAS  Google Scholar 

  36. Z. Sun, L. Fu, Z. Liu, et al., J. Nanosci. Nanotechnol. 6(3), 691 (2006).

    Article  CAS  Google Scholar 

  37. D. J. Denney and R. H. Cole, J. Chem. Phys. 23(10), 1767 (1955).

    Article  CAS  Google Scholar 

  38. M. Nicolas, M. Malineau, and R. Reich, Phys. Chem. Liq. 10(1), 11 (1980).

    Article  CAS  Google Scholar 

  39. W. Dannhauser and L. W. Bahe, J. Chem. Phys. 40(10), 3058 (1964).

    Article  CAS  Google Scholar 

  40. Y. Hiejima, Y. Kajihara, H. Kohno, et al., J. Phys.: Condens. Matter 13(46), 10307 (2001).

    Google Scholar 

  41. V. A. Durov, Zh. Fiz. Khim. 55(11), 2833 (1981).

    Google Scholar 

  42. V. A. Durov, Zh. Fiz. Khim. 56(2), 384 (1982).

    CAS  Google Scholar 

  43. V. A. Durov and T. M. Usacheva, Zh. Fiz. Khim. 56(3), 648 (1982).

    CAS  Google Scholar 

  44. L. A. Curtiss and M. Blander, Chem. Rev. 88(6), 827 (1988).

    Article  CAS  Google Scholar 

  45. U. Buck and F. Huisken, Chem. Rev. 100(11), 3863 (2000).

    Article  CAS  Google Scholar 

  46. K. J. Tauer and W. N. Lipscomb, Acta Crystallogr. 5(5), 606 (1952).

    Article  CAS  Google Scholar 

  47. F. N. Penkert, T. Weyhermüller, and K. Wieghardt, Chem. Commun., p. 557 (1998).

  48. L. Benisvy, I. Mutikainen, M. Quesada, et al., Chem. Commun., p. 3723 (2006).

  49. S. Sarkar and R. N. Joarder, J. Chem. Phys. 99(3), 2032 (1993).

    Article  CAS  Google Scholar 

  50. S. W. Benson, J. Am. Chem. Soc. 118(43), 10645 (1996).

    Google Scholar 

  51. V. A. Durov and M. N. Artemov, Zh. Fiz. Khim. 79(2), 270 (2005) [Russ. J. Phys. Chem. 79 (2), 207 (2005)].

    Google Scholar 

  52. V. A. Durov, M. N. Artemov, and I. Yu. Shilov, Zh. Fiz. Khim. 79(12), 2193 (2005) [Russ. J. Phys. Chem. 79 (12), 1955 (2005)].

    Google Scholar 

  53. V. A. Durov and I. Yu. Shilov, Zh. Fiz. Khim. 81(2), 249 (2007) [Russ. J. Phys. Chem. A 81 (2), 196 (2007)].

    Google Scholar 

  54. V. A. Durov and I. Yu. Shilov, Zh. Fiz. Khim. 82(1), 93 (2008).

    Google Scholar 

  55. W. L. Jorgensen, J. Am. Chem. Soc. 102(2), 543 (1980).

    Article  CAS  Google Scholar 

  56. G. Palinkas, E. Hawlicka, and K. Heinzinger, J. Phys. Chem. 91(16), 4334 (1987).

    Article  CAS  Google Scholar 

  57. I. Yu. Shilov, B. M. Rode, and V. A. Durov, Chem. Phys. 241(1), 75 (1999).

    Article  CAS  Google Scholar 

  58. M. Chalaris and J. Samios, J. Phys. Chem. B 103(7), 1161 (1999).

    Article  CAS  Google Scholar 

  59. S. P. Krishtal’ and M. G. Kiselev, Zh. Fiz. Khim. 77(11), 2019 (2003) [Russ. J. Phys. Chem. 77 (11), (2003)].

    CAS  Google Scholar 

  60. J.-W. Handgraaf, E. J. Meijer, and M.-P. Gaigeot, J. Chem. Phys. 121(20), 10111 (2004).

    Google Scholar 

  61. V. A. Durov, B. D. Bursulaya, A. Artykov, and N. A. Ivanova, Zh. Fiz. Khim. 63(12), 3192 (1989).

    CAS  Google Scholar 

  62. V. A. Durov, B. D. Bursulaya, and N. A. Ivanova, Zh. Fiz. Khim. 64(3), 620 (1990).

    CAS  Google Scholar 

  63. V. A. Durov, Zh. Fiz. Khim. 63(8), 2033 (1989).

    CAS  Google Scholar 

  64. V. A. Durov and B. D. Bursulaya, Zh. Fiz. Khim. 64(11), 3130 (1990).

    Google Scholar 

  65. V. A. Durov, Zh. Fiz. Khim. 65(7), 1766 (1991).

    CAS  Google Scholar 

  66. H. Fröhlich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss (Clarendon, Oxford, 1958; Inostrannaya Literatura, Moscow, 1960).

    Google Scholar 

  67. Yu. V. Efremov, Zh. Fiz. Khim. 40(6), 1240 (1966).

    CAS  Google Scholar 

  68. T. Amano, J. Mol. Spectrosc. 88(1), 194 (1981).

    Article  CAS  Google Scholar 

  69. M. Fisher, The Nature of Critical Points (Univ. of Colorado, Boulder, Colo., 1965; Mir, Moscow, 1968).

    Google Scholar 

  70. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon, Oxford, 1971; Mir, Moscow, 1973).

    Google Scholar 

  71. P. Newton, C. S. Copeland, and S. W. Benson, J. Chem. Phys. 37(2), 339 (1962).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Durov.

Additional information

Original Russian Text © V.A. Durov, I.Yu. Shilov, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 11, pp. 2049–2057.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durov, V.A., Shilov, I.Y. Simulation of the supramolecular organization and permittivity of methanol over a wide range of state parameters, including the supercritical region. Russ. J. Phys. Chem. 82, 1838–1846 (2008). https://doi.org/10.1134/S0036024408110095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024408110095

Keywords

Navigation