Skip to main content
Log in

The embedded atom model of liquid cesium

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A, Focus on Chemistry Aims and scope Submit manuscript

Abstract

The embedded atom potential was calculated for cesium over the temperature range 323–1923 K at pressures up to 9.8 GPa from the diffraction data on the structure of the metal close to the temperature of fusion (T f). The parameters of the embedded atom potential were adjusted using the data on the thermodynamic properties and structure of liquid cesium. The embedded atom potential well predicts the structural and thermodynamic characteristics of the liquid metal as the temperature increases along the liquid-vapor equilibrium line and under strong compression. The calculated potential energy and structure of liquid cesium closely agree with the experimental data at temperatures up to 1373 K. The calculated bulk compression modulus is close to its experimental values at all temperatures except 323 K. The self-diffusion coefficients increase as the temperature grows by a power law with an exponent close to 2 and satisfy the Stokes-Einstein equation. Deviations from experimental data at temperatures above 1400 K are explained by the metal-nonmetal transition that occurs as the density decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Daw and M. I. Baskes, Phys. Rev. B: Condens. Matter 29(12), 6443 (1984).

    CAS  Google Scholar 

  2. M. I. Mendelev and D. J. Srolovitz, Phys. Rev. B: Condens. Matter 66, 014205 (2002).

    Google Scholar 

  3. M. I. Mendelev, S. Han, D. J. Srolovitz, et al., Philos. Mag. A 83, 3977 (2003).

    Article  CAS  Google Scholar 

  4. D. K. Belashchenko and O. I. Ostrovskii, Zh. Fiz. Khim. 80(4), 602 (2006) [Russ. J. Phys. Chem. 80 (4), 509 (2006)].

    Google Scholar 

  5. D. K. Belashchenko, Teplofiz. Vys. Temp. 44(5), 682 (2006).

    Google Scholar 

  6. D. K. Belashchenko, Zh. Fiz. Khim. 80(5), 872 (2006) [Russ. J. Phys. Chem. 80 (5), 758 (2006)].

    Google Scholar 

  7. D. K. Belashchenko, Zh. Fiz. Khim. 80(10), 1767 (2006) [Russ. J. Phys. Chem. 80 (10), 1567 (2006)].

    Google Scholar 

  8. W. Schommers, Phys. Rev. A: At., Mol., Opt. Phys. 28, 3599 (1983).

    CAS  Google Scholar 

  9. D. K. Belashchenko, Computer Simulation of Liquid and Amorphous Substances (Mosk. Inst. Stali i Splavov, Moscow, 2005) [in Russian].

    Google Scholar 

  10. G. E. Norman and V. V. Stegailov, Zh. Eksp. Teor. Fiz. 119(5), 1011 (2001) [J. Exp. Theor. Phys. 92 (5), 879 (2001)].

    Google Scholar 

  11. P. I. Bystrov, D. N. Kagan, G. A. Krechetova, and E. E. Shpil’rain, Liquid Metal Heat Carriers for Heat Pipes and Power Plants (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  12. Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids (McGraw Hill, New York, 1980).

    Google Scholar 

  13. R. Winter, F. Hensel, T. Bodensteiner, and W. Glaser, Ber. Bunsen-Ges. Phys. Chem. 91, 1327 (1987).

    CAS  Google Scholar 

  14. K. Tsuji, K. Yaoita, M. Imai, et al., J. Non-Cryst. Solids 117–118, 72 (1990).

    Article  Google Scholar 

  15. S. Falconi, L. F. Lundegaard, C. Hejny, and M. I. McMahon, Phys. Rev. Lett., PRL 94, 125507(4) (2005).

  16. D. K. Belashchenko, Kristallografiya 43(3), 400 (1998) [Crystallogr. Rep. 43 (3), 362 (1998)].

    CAS  Google Scholar 

  17. G. C. Kennedy, A. Jayaraman, and R. C. Newton, Phys. Rev. 126(4), 1363 (1962).

    Article  CAS  Google Scholar 

  18. A. Jayaraman, R. C. Newton, and J. M. McDonough, Phys. Rev. 159, 527 (1967).

    Article  CAS  Google Scholar 

  19. Y. Katayama and K. Tsuji, J. Phys.: Condens. Matter 15, 6085 (2003).

    Article  CAS  Google Scholar 

  20. http://www.tagen.tohoku.ac.jp/general/building/iamp/database/scm/LIQ/gr.html.

  21. D. K. Belashchenko, Transport Phenomena in Liquid Metals and Semiconductors (Atomizdat, Moscow, 1970) [in Russian].

    Google Scholar 

  22. D. K. Belashchenko, Usp. Fiz. Nauk 169(4), 361 (1999).

    Article  Google Scholar 

  23. D. K. Belashchenko, Teplofiz. Vys. Temp. 40(2), 240 (2002) [High Temp. 40 (2), 212 (2002)].

    Google Scholar 

  24. Sh. Munejiri, F. Shimojo, and K. Hoshimo, J. Phys.: Condens. Matter 10, 4963 (1998).

    Article  CAS  Google Scholar 

  25. Sh. Munejiri, F. Shimojo, and K. Hoshino, J. Non-Cryst. Solids 250–252, 144 (1999).

    Article  Google Scholar 

  26. Sh. Munejiri, F. Shimojo, K. Hoshino, and M. Watabe, J. Non-Cryst. Solids 205–207, 278 (1996).

    Article  Google Scholar 

  27. Sh. Munejiri, F. Shimojo, K. Hoshino, and M. Watabe, J. Phys.: Condens. Matter 9, 3303 (1997).

    Article  CAS  Google Scholar 

  28. D. K. Belashchenko and A. S. Ginzburg, Zh. Eksp. Teor. Fiz. 115(1), 50 (1999).

    Google Scholar 

  29. D. K. Belashchenko, A. S. Ginzburg, and M. I. Mendelev, Zh. Fiz. Khim. 74(4), 669 (2000) [Russ. J. Phys. Chem. 74 (4), 577 (2000)].

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Belashchenko.

Additional information

Original Russian Text © D.K. Belashchenko, N.Yu. Nikitin, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 8, pp. 1445–1452.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belashchenko, D.K., Nikitin, N.Y. The embedded atom model of liquid cesium. Russ. J. Phys. Chem. 82, 1283–1289 (2008). https://doi.org/10.1134/S0036024408080086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024408080086

Keywords

Navigation