Skip to main content
Log in

An analysis of the kinetics of the thermal modification of biotissues by speckle correlometry method

  • Biophysical Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The statistical characteristics of the dynamic speckle fields associated with the scattering of coherent emission on a cartilaginous tissue during its thermal modification by laser irradiation were studied. A method for determining the energy of activation of the thermally induced processes of structural modification of scattering sites was suggested; the method is based on an analysis of the scattered light flashing index. For cartilaginous tissue, the activation energy was estimated as ≈63 kJ/mol, a value that may characterize conformational transitions in the subsystem of proteoglycan aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Roggan, in Laser Induced Interstitial Thermotherapy, Ed. by G. Muller Bellingham (SPIE Optical Engineering Press, Washington, DC, 1995).

    Google Scholar 

  2. M. Nickfarjam, V. Muralidharan, and C. Christophi, J. Surg. Res. 127, 208 (2005).

    Article  Google Scholar 

  3. E. Sobol, A. Sviridov, A. Omel’chenko, et al., Biotechnology and Genetic Engineering Reviews 17, 553 (2000).

    CAS  Google Scholar 

  4. Y. Ovchinnikov, E. Sobol, V. Svistushkin, et al., Arch. Facial Plast. Surg. 4, 180 (2002).

    Article  Google Scholar 

  5. A. Maroudas and R. Schneiderman, J. Orthop. Res. 5, 133 (1987).

    Article  CAS  Google Scholar 

  6. V. N. Bagratashvili, E. N. Sobol, A. P. Sviridov, et al., J. Biomechanics 30, 813 (1997).

    Article  CAS  Google Scholar 

  7. Photon Correlation and Light Beating Spectroscopy, Ed. by H. Z. Cummins and E. R. Pike (Plenum, New York, 1974; Mir, Moscow, 1978).

    Google Scholar 

  8. Photon Correlation Spectroscopy and Velocimetry, Ed. by H. Z. Cummins and E. R. Pike (Plenum, New York, 1977).

    Google Scholar 

  9. D. A. Lebedev, Yu. N. Levchuk, A. V. Lomakin, and V. A. Noskin, Laser Correlation Spectroscopy in Biology (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  10. A. Oulamara, G. Tribillon, and J. Doubernoy, J. Mod. Opt. 36, 165 (1989).

    Google Scholar 

  11. G. J. Tearney and B. E. Bouma, Opt. Lett. 27, 533 (2002).

    Google Scholar 

  12. N. Basilev, N. Fomin, C. Fuentes, et al., Laser Phys. 13, 786 (2003).

    Google Scholar 

  13. Y. Aizu and T. Asakura, Opt. Laser Technol. 23, 205 (1991).

    Article  Google Scholar 

  14. G. E. Nilsson and E. G. Salerud, N. O. Tomas Stromberg, and K. Wardell, Biomedical Photonics Handbook, Ed. by T. Vo-Dinh (CRC, Boca Raton, FL, 2003).

    Google Scholar 

  15. M. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, J. Cerebral Blood Flow and Metabolizm 21, 195 (2001).

    Article  CAS  Google Scholar 

  16. A. F. Fercher and J. D. Briers, Opt. Commum. 37, 326 (1981).

    Article  Google Scholar 

  17. J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).

    Article  Google Scholar 

  18. D. A. Zimnyakov, J. D. Briers, and V. V. Tuckin, Handbook of Optical Medical Diagnostics, Ed. by V. V. Tuckin (SPIE Press, Bellingham, Wash., 2002).

    Google Scholar 

  19. D. A. Zimnyakov, D. N. Agafonov, A. P. Sviridov, et al., Appl. Opt. 41, 5989 (2002).

    Google Scholar 

  20. V. Viasnoff, F. Lequeux, and D. J. Pine, Rev. Sci. Instrum. 73, 2336 (2002).

    Article  CAS  Google Scholar 

  21. F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 63, 614 (2001).

    Google Scholar 

  22. S. Romer, F. Scheffold, and P. Schurtenberger, Phys. Rev. Lett. 85, 4980 (2000).

    Article  CAS  Google Scholar 

  23. J. Pearce and S. Thomsen, Optical Thermal Response of Laser Irradiated Tissue, Ed. by A. J. Welch and M. J. C. van Gemert (Plenum, New York, 1995).

    Google Scholar 

  24. N. Yu. Ignat’eva, S. V. Averkiev, E. N. Sobol’, and V. V. Lunin, Zh. Fiz. Khim. 79, 1505 (2005) [Russ. J. Phys. Chem. 79, 1333 (2005)].

    Google Scholar 

  25. G. Maret and P. E. Wolf, Z. Phys. B: Condens. Matter 65, 409 (1987).

    Article  Google Scholar 

  26. F. C. MacKintosh and S. John, Phys. Rev. B: Condens. Matter 40, 2382 (1989).

    Google Scholar 

  27. J. E. Scott, F. Heatley, and B. Wood, Biochemistry 34, 15467 (1995).

    Article  CAS  Google Scholar 

  28. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond (Freeman, San Francisco, 1960; Mir, Moscow, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.A. Zimnyakov, A.P. Sviridov, L.V. Kuznetsova, S.A. Baranov, N.Yu. Ignat’eva, V.V. Lunin, 2007, published in Zhurnal Fizicheskoi Khimii, 2007, Vol. 81, No. 4, pp. 725–731.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimnyakov, D.A., Sviridov, A.P., Kuznetsova, L.V. et al. An analysis of the kinetics of the thermal modification of biotissues by speckle correlometry method. Russ. J. Phys. Chem. 81, 626–631 (2007). https://doi.org/10.1134/S0036024407040218

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024407040218

Keywords

Navigation