Skip to main content
Log in

Determination of Optimal Conditions for Template Sol-Gel Synthesis for the Formation of Antibacterial Materials

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

One of the current global problems is the increasing resistance of microorganisms to antibacterial agents and the emergence of associated infections. Therefore, the synthesis of new hybrid materials capable of resisting bacteria is necessary. In this work, loading platforms for antibacterial material based on tetraethoxysilane were formed using yeast cells Ogataea polymorpha VKM Y-2559 and Cryptococcus curvatus VKM Y-3288 as templates under conditions of acid and alkaline hydrolysis. Using scanning electron microscopy, it was shown that an alkaline environment is most optimal when using yeast cells as templates for the formation of a porous material. The surface-active properties of a number of quaternary ammonium compounds were studied using the tensometry method to select the optimal template for the production of antibacterial materials in one stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Cámara W. Green, C. MacPhee, et al., Biofilms Microbiomes 8, 42 (2022). https://doi.org/10.1038/s41522-022-00306-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. S. Nadeem, U. Gohar, S. Tahir, et al., Crit. Rev. Microbiol.  46, 578 (2020). https://doi.org/10.1080/1040841X.2020.1813687

    Article  CAS  PubMed  Google Scholar 

  3. C. J. L. Murray, K. S. Ikuta, F. Sharara, et al., Lancet 399, 629 (2022). https://doi.org/10.1016/S0140-6736(21)02724-0

    Article  CAS  Google Scholar 

  4. E. A. Saverina, N. A. Frolov, O. A. Kamanina, et al., ACS Infect. Dis. 9, 394 (2023). https://doi.org/10.1021/acsinfecdis.2c00469

    Article  CAS  PubMed  Google Scholar 

  5. J. E. Nielsen, M. A. Alford, D. B. Y. Yung, et al., ACS Infect. Dis. 8, 533 (2022). https://doi.org/10.1021/acsinfecdis.1c00536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. B. Song, E. Zhang, X. Han, et al., ACS Appl. Mater. Interfaces 12, 21330 (2020). https://doi.org/10.1021/acsami.9b19992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. V. A. Spirescu, C. Chircov, A. M. Grumezescu, et al., Int. J. Mol. Sci. 22, 4595 (2021). https://doi.org/10.3390/ijms22094595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. T. Zhang, Z. Jin, Z. Jia, et al., React. Funct. Polym. 170, 105117 (2022). https://doi.org/10.1016/j.reactfunctpolym.2021.105117

    Article  CAS  Google Scholar 

  9. B. Ma, Y. Chen, G. Hu, et al., ACS Biomater. Sci. Eng. 8, 109 (2022). https://doi.org/10.1021/acsbiomaterials.1c01267

    Article  CAS  PubMed  Google Scholar 

  10. O. V. Alekseeva, D. N. Smirnova, A. V. Noskov, et al., Russ. J. Inorg. Chem. 68, 953 (2023). https://doi.org/10.1134/S0036023623601071

    Article  CAS  Google Scholar 

  11. M. Wen, X. Fu, T. Li, et al., Russ. J. Gen. Chem. 93, 2371 (2023). https://doi.org/10.1134/S1070363223090189

    Article  CAS  Google Scholar 

  12. D. Diaz, J. Church, M. Young, et al., J. Environ. Sci. 82, 213 (2019). https://doi.org/10.1016/j.jes.2019.03.011

    Article  CAS  Google Scholar 

  13. H. Zhang, L. Liu, P. Hou, et al., Polymers 14, 1737 (2022). https://doi.org/10.3390/polym14091737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. X. Z. Feng, Z. Xiao, L. Zhang, et al., Nat. Prod. Commun. 15, X20948365 (2020). https://doi.org/10.1177/1934578X20948365

    Article  Google Scholar 

  15. M. R. Garipov, A. E. Sabirova, R. S. Pavelyev, et al., Bioorg. Chem. 104, 104306 (2020). https://doi.org/10.1016/j.bioorg.2020.104306

    Article  CAS  PubMed  Google Scholar 

  16. A. S. Sokolova, O. I. Yarovaya, D. V. Baranova, et al., Arch. Virol. 166, 1965 (2021). https://doi.org/10.1007/s00705-021-05102-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. C. Gaspar, J. Rolo, N. Cerca, et al., Pathogens 10, 261 (2021). https://doi.org/10.3390/pathogens10030261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. V. Bueno and S. Ghoshal, Langmuir 36, 14633 (2020). https://doi.org/10.1021/acs.langmuir.0c02501

    Article  CAS  PubMed  Google Scholar 

  19. N. S. Zaharudin, E. D. M. Isa, H. Ahmad, et al., J. Saudi Chem. Soc. 24, 289 (2020). https://doi.org/10.1016/j.jscs.2020.01.003

    Article  CAS  Google Scholar 

  20. C. A. Stewart, Y. Finer, and B. D. Hatton, Sci. Rep. 8, 895 (2018). https://doi.org/10.1038/s41598-018-19166-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. B. T. Hoa, L. H. Phuc, N. Q. Hien, et al., Russ. J. Inorg. Chem. 67, 63 (2022). https://doi.org/10.1134/S003602362260160X

    Article  Google Scholar 

  22. O. A. Kamanina, E. A. Saverina, P. V. Rybochkin, et al., Nanomaterials 12, 1086 (2022). https://doi.org/10.3390/nano12071086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. E. S. Dolinina and E. V. Parfenyuk, Russ. J. Inorg. Chem. 67, 401 (2022). https://doi.org/10.1134/S0036023622030068

    Article  CAS  Google Scholar 

  24. M. I. Voronova, O. V. Surov, N. V. Rubleva, et al., Russ. J. Inorg. Chem. 67, 395 (2022). https://doi.org/10.1134/S0036023622030159

    Article  CAS  Google Scholar 

  25. A. Ebrahiminezhad, S. Najafipour, A. Kouhpayeh, et al., Colloids Surf., B: Biointerfaces 118, 249 (2014). https://doi.org/10.1016/j.colsurfb.2014.03.052

    Article  CAS  PubMed  Google Scholar 

  26. V. Dubovoy, A. Ganti, T. Zhang, et al., J. Am. Chem. Soc. 140, 13534 (2018). https://doi.org/10.1021/jacs.8b04843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D. Bokov, Jalil A. Turki, S. Chupradit, et al., Adv. Mater. Sci. Eng. 1, 5102014 (2021). https://doi.org/10.1155/2021/5102014

    Article  CAS  Google Scholar 

  28. M. Yamamoto, T. Takami, R. Matsumura, et al., Biocontrol Sci. Jpn. 21, 231 (2016). https://doi.org/10.4265/bio.21.231

    Article  CAS  Google Scholar 

  29. N. A. Frolov, K. A. Fedoseeva, K. Hansford, et al., ChemMedChem 16, 2954 (2021). https://doi.org/10.1002/cmdc.202100284

    Article  CAS  PubMed  Google Scholar 

  30. M. A. Seferyan, E. A. Saverina, N. A. Frolov, et al., ACS Infect. Dis. 9, 1206 (2023). https://doi.org/10.1021/acsinfecdis.2c00546

    Article  CAS  PubMed  Google Scholar 

  31. J. Xu, D. Ren, N. Chen, et al., Colloids Surf., A: Physi-cochem. 625, 126845 (2021). https://doi.org/10.1016/j.colsurfa.2021.126845

    Article  CAS  Google Scholar 

  32. H. Esmaeili, S. M. Mousavi, S. A. Hashemi, et al., Chapter 7, Application of Biosurfactants in the Removal of Oil from Emulsion (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-822696-4.00008-5

    Book  Google Scholar 

  33. N. Azum, M. M. Alotaibi, M. Ali, et al., J. Mol. Liq. 259, 121057 (2023). https://doi.org/10.1016/j.molliq.2022.121057

    Article  CAS  Google Scholar 

Download references

Funding

The research was funded by the Government of the Tula region for science and technology in 2023 under contract DS/111/BASiB1/23/TO dated 27.09.2023 and support from the Rector of Tula State University for students enrolled in Master’s degree programmes under grant number 8938GRR_M.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by E.A. Lantsova, M.A. Bardina, E.A. Save-rina, and O.A. Kamanina. The first draft of the manuscript was written by E.A. Lantsova and M.A. Bardina, all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to E. A. Lantsova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lantsova, E.A., Bardina, M.A., Saverina, E.A. et al. Determination of Optimal Conditions for Template Sol-Gel Synthesis for the Formation of Antibacterial Materials. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S003602362460028X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S003602362460028X

Keywords:

Navigation