Skip to main content
Log in

Thermophysical Properties of Lanthanum and Samarium Zirconate—Hafnates

  • PHYSICAL METHODS OF INVESTIGATION
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis and identification of lanthanum and samarium zirconate–hafnates of the pyrochlore structure type have been reported. The heat capacity of the samples in the temperature range 310–1380 K was measured by the differential scanning calorimetry method. The temperature dependences of the cubic lattice parameters were determined, and the thermal expansion coefficients were evaluated in the range 298–1273 K using high-temperature X-ray powder diffraction. The thermal diffusivity of the samples was measured by the laser flash method, and the temperature dependences of the thermal conductivity were calculated considering the porosity of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. P. Padture, M. Gell, and E. H. Jordan, Science 296, 280 (2002). https://doi.org/10.1126/science.1068609

    Article  CAS  PubMed  Google Scholar 

  2. D. R. Clarke, Surf. Coat. Techol. 163, 67 (2003). https://doi.org/10.1016/S0257-8972(02)00593-5

    Article  Google Scholar 

  3. W. Pan, S. R. Phillpot, C. Wan, et al., MRS Bull. 37, 917 (2012). https://doi.org/10.1557/mrs.2012.234

    Article  CAS  Google Scholar 

  4. D. Tejero-Martin, C. Bennet, and T. Hussain, J. Eur. Ceram. Soc. 41, 1747 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.057

    Article  CAS  Google Scholar 

  5. R. Vassen, X. Cao, F. Tietz, et al., J. Am. Ceram. Soc. 83, 2023 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01506.x

    Article  CAS  Google Scholar 

  6. M. Mikuskiewicz, D. Migas, and G. Moskal, J. Surf. Coat. Technol. 354, 66 (2018). https://doi.org/10.1016/j.surfcoat.2018.08.096

    Article  CAS  Google Scholar 

  7. P. Liang, S. Dong, J. Zeng, et al., Ceram. Int. 45, 22432 (2019). https://doi.org/10.1016/j.ceramint.2019.07.235

    Article  CAS  Google Scholar 

  8. E. R. Andrievskaya, J. Eur. Ceram. Soc. 28, 2363 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.01.009

    Article  CAS  Google Scholar 

  9. P. A. Arsen’ev, V. B. Glushkova, A. A. Evdokimov, et al., Rare Earth Compounds: Zirconates, Hafnati, Niobates, Tantalates, Antimonates (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  10. Y. Wang, Z. Ma, L. Liu, and Y. Liu, J. Adv. Ceram. 10, 1389 (2021). https://doi.org/10.1007/s40145-021-0514-x

    Article  CAS  Google Scholar 

  11. H.-F. Chen, C. Zhang, P. Song, et al., Rare Metals 39, 498 (2020). https://doi.org/10.1007/s12598-019-01307-1

    Article  CAS  Google Scholar 

  12. L. Cong, W. Li, Q. Song, et al., Corros. Sci. 209, 110714 (2022). https://doi.org/10.1016/j.corsci.2022.110714

    Article  CAS  Google Scholar 

  13. D. L. Poerschke and C. G. Levi, J. Eur. Ceram. Soc. 35, 681 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.09.006

    Article  CAS  Google Scholar 

  14. J. Wu, X. Wei, N. P. Padture, et al., J. Am. Ceram. Soc. 85, 3031. https://doi.org/10.1111/j.1151-2916.2002.tb00574.x

  15. G. Suresh, G. Seenivasan, M. V. Krishnaniah, et al., J. Nucl. Mater. 249, 259 (1997). https://doi.org/10.1016/s0022-3115(97)00235-3

    Article  CAS  Google Scholar 

  16. G. Suresh, G. Seenivasan, M. V. Krishnaniah, et al., J. Alloys Compd. 269, L9 (1998). https://doi.org/10.1016/s0925-8388(97)00629-4

  17. H. Lehmann, D. Pitzer, G. Pracht, et al., J. Am. Ceram. Soc. 86, 1338 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03473.x

    Article  CAS  Google Scholar 

  18. KuttiK. V. G. Govindan, S. Rajagopalan, and C. K. Mathews, Mater. Res. Bull. 29, 759 (1994). https://doi.org/10.1016/0025-5408(94)90201-1

    Article  Google Scholar 

  19. K. V. G. Kutti, S. Rajagopalan, and R. Asuvathraman, Thermochim. Acta 168, 205 (1990). https://doi.org/10.1016/0040-6031(90)80639-G

    Article  Google Scholar 

  20. A. V. Guskov, P. G. Gagarin, V. N. Guskov, et al., Russ. J. Inorg. Chem. 66, 1017 (2021). https://doi.org/10.1134/S0036023621070056

    Article  CAS  Google Scholar 

  21. V. N. Guskov, P. G. Gagarin, A. V. Guskov, et al., Ceram. Int. 45, 20733 (2019). https://doi.org/10.1016/j.ceramint.2019.07.057

    Article  CAS  Google Scholar 

  22. A. V. Guskov, P. G. Gagarin, V. N. Guskov, et al., Inorg. Mater. 57, 1015 (2021). https://doi.org/10.1134/S0020168521100046

    Article  CAS  Google Scholar 

  23. A. V. Guskov, P. G. Gagarin, V. N. Guskov, et al., Russ. J. Inorg Chem. 66, 1710 (2021). https://doi.org/10.1134/S0036023621110085

    Article  CAS  Google Scholar 

  24. V. N. Guskov, A. V. Tyurtin, A. V. Guskov, et al., Ceram. Int. 46, 12822 (2020). https://doi.org/10.1016/j.ceramint.2020.02.052

    Article  CAS  Google Scholar 

  25. A. V. Guskov, P. G. Gagarin, V. N. Guskov, et al., Inorg. Mater. 57, 710 (2021). https://doi.org/10.1134/S0020168521070074

    Article  CAS  Google Scholar 

  26. V. N. Guskov, K. S. Gavrichev, P. G. Gagarin, and A. V. Guskov, Russ. J. Inorg. Chem. 64, 1265 (2019). https://doi.org/10.1134/S0036023619100048

    Article  CAS  Google Scholar 

  27. A. V. Guskov, P. G. Gagarin, A. V. Tyrin, et al., Russ. J. Phys. Chem. A 94, 233 (2020). https://doi.org/10.1134/S0036024420020120

    Article  CAS  Google Scholar 

  28. B. Ya. Sukharevskii, E. I. Zoz, A. M. Gavrish, et al., Dokl. Akad. Nauk SSSR 237, 589 (1977).

    CAS  Google Scholar 

  29. E. I. Zoz, A. M. Gavrish, and N. V. Gul’ko, Izv. Akad. Nauk SSSR, Neorg. Mater. 15, 109 (1979).

    Google Scholar 

  30. E. I. Zoz, N. G. Yakovenko, and A. A. Nikolaenko, Izv. Akad. Nauk SSSR, Neorg. Mater. 15, 310 (1979).

    CAS  Google Scholar 

  31. M. M. Bakradze, O. N. Doronin, N. I. Artemenko, et al., Rus. J. Inorg. Chem. 66, 789 (2021). https://doi.org/10.1134/S003602362105003X

    Article  CAS  Google Scholar 

  32. M. A. Ryumin, G. E. Nikiforova, A. V. Tyurin, et al., Inorg. Mater. 56, 97 (2020). https://doi.org/10.1134/S0020168520010148

    Article  CAS  Google Scholar 

  33. P. G. Gagarin, A. V. Guskov, V. N. Guskov, et al., Ceram. Int. 47, 2892 (2021). https://doi.org/10.1016/j.ceramint.2020.09.072

    Article  CAS  Google Scholar 

  34. Powder Diffraction Files (Inorganic Phases) Joint Committee on Powder diffraction Data (JCPDS).

  35. J. Meija, T. B. Coplen, M. Berlund, et al., Pure Appl. Chem. 88, 265 (2016). https://doi.org/10.1515/pac-2015-0305

    Article  CAS  Google Scholar 

  36. C. G. Maier and K. K. Kelley, J. Am. Chem. Soc. 54, 3243 (1932). https://doi.org/10.1021/ja01347a029

    Article  CAS  Google Scholar 

  37. D. A. Johnson and E. F. Westrum, Jr., Themochim. Acta 245, 173 (1994).

    Article  CAS  Google Scholar 

  38. A. Tari, The Specific Heat of Matter at Low Temperatures (Imperial College Press, 2003). https://doi.org/10.1142/9781860949395_0006

    Book  Google Scholar 

  39. K. W. Schlichting, N. P. Padture, and P. G. Klemens, J. Mater. Sci. 36, 3003 (2001). https://doi.org/10.1023/a:1017970924312

    Article  CAS  Google Scholar 

  40. H. Chen, Y. Gao, Y. Liu, et al., J. Alloys Compd. 480, 843 (2009). https://doi.org/10.1016/j.jallcom.2009.02.081

    Article  CAS  Google Scholar 

  41. X. Guo, Y. Yu, W. Ma, et al., Ceram. Int. 48, 36084 (2022). https://doi.org/10.1016/j.ceramint.2022.08.122

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported through a grant from the President of the Russian Federation for state support of young scientists—candidates of science, MK-2479.2022.1.3.

Measurements of the heat capacity of Nd2Hf2O7 and Gd2Hf2O7 were carried out with the support of a scholarship from the President of the Russian Federation for A.V. Guskov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Gagarin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagarin, P.G., Guskov, A.V., Guskov, V.N. et al. Thermophysical Properties of Lanthanum and Samarium Zirconate—Hafnates. Russ. J. Inorg. Chem. 68, 1768–1775 (2023). https://doi.org/10.1134/S0036023623602192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602192

Keywords:

Navigation