Skip to main content
Log in

A Bowl-Shaped Zinc-Salen Complex: Structural Analysis and Molecular Docking Studies against Omicron-S and Delta-S Variants

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A novel binuclear salen-Zn(II) complex has been prepared and structurally investigated by single-crystal X-ray crystallography, which reveals a distorted tetragonal pyramidal environment around one zinc atom and distorted tetrahedral geometry surrounding the second zinc atom. In order to further understand the structural aspects of the complex, additional research into its structure has been conducted using theoretical methods, such as DFT and TD-DFT. Furthermore, Hirschfeld surface analysis has been used to obtain quantitative descriptions of intermolecular interactions in molecules. A comparative molecular docking investigation for the title binuclear Zn(II) complex has been explored against the SARS-CoV-2 S-Delta (PDB ID: 7V8B) and the SARS-CoV-2 Omicron (PDB ID: 7T9K) variants, and the results indicated that the Omicron variation had higher energy for stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. Temel and S. Ilhan, Russ. J. Inorg. Chem. 54, 543 (2009). https://doi.org/10.1134/S0036023609040093

    Article  Google Scholar 

  2. S. I. Al-Resayes, M. Azam, A. Trzesowska-Kruszynska, R. Kruszynski, S. M. Soliman, R. K. Mohapatra, and Z. Khan, ACS Omega 5, 27227 (2020). https://doi.org/10.1021/acsomega.0c03376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Azam, S. I. Al-Resayes, A. Trzesowska-Kruszynska, and R. Kruszynski, J. Mol. Struct. 1259, 132727 (2022). https://doi.org/10.1016/j.molstruc.2022.132727

    Article  CAS  Google Scholar 

  4. S. Kansız, M. Azam, T. Basılı, S. Meral, F. A. Aktas, S. Yesilbag, K. Min, A. A. Agar, and N. Dege, J. Mol. Struct. 1265, 133477 (2022). https://doi.org/10.1016/j.molstruc.2022.13347

    Article  Google Scholar 

  5. S. Yamada, Coord. Chem. Rev. 190–192, 537 (1999). https://doi.org/10.1016/S0010-8545(99)00099-5

    Article  Google Scholar 

  6. M. Azam, S. M. Wabaidur, M. Alam, Z. Khan, I. O. Alanazi, S. I. Al-Resayes, and I. S. Moon, Trans. Met. Chem. 46, 65 (2021). https://doi.org/10.1007/s11243-020-00422-8

    Article  CAS  Google Scholar 

  7. M. Azam, S. M. Wabaidur, M. Alam, A. Trzesowska-Kruszynska, R. Kruszynski, S. I. Al-Resayes, F. F. Alqahtani, and M. R. Khan, Polyhedron 195, 114991 (2021). https://doi.org/10.1016/j.poly.2020.114991

    Article  CAS  Google Scholar 

  8. F. Marchetti, C. Pettinari, R. Pettinari, A. Cingolani, D. Leonesi, and A. Lorenzotti, Polyhedron 18, 3041 (1999). https://doi.org/10.1016/S0277-5387(99)00230-2

    Article  CAS  Google Scholar 

  9. J. M. Berg and Y. Shi, Science 271, 1081 (1996). https://doi.org/10.1126/science.271.5252.1081

  10. X. Tian, S. Hussain, C. de Pace, L. Ruiz-Perez, and G. Battaglia, Chem. Asian J. 14, 509 (2019). https://doi.org/10.1002/asia.201801437

    Article  CAS  PubMed  Google Scholar 

  11. C. Andreini and I. Bertini, J. Inorg. Biochem. 11, 150 (2012). https://doi.org/10.1016/j.jinorgbio.2011.11.020

    Article  CAS  Google Scholar 

  12. N. Kumar, Roopa, V. Bhalla, and M. Kumar, Coord. Chem. Rev. 427, 213550 (2021). https://doi.org/10.1016/j.ccr.2020.213550

    Article  CAS  Google Scholar 

  13. Q. Zhao, C. Huang and F. Li, Chem. Soc. Rev. 40, 2508 (2011). https://doi.org/10.1039/C0CS00114G

    Article  CAS  PubMed  Google Scholar 

  14. M. Azam, G. Velmurugan, A. Trzesowska-Kruszynska, S. I. Al-Resayes, R. Kruszynski, and P. Venuvanalingam, Inorg. Chim. Acta 534, 120807 (2022). https://doi.org/10.1016/j.ica.2022.120807

    Article  CAS  Google Scholar 

  15. T. Katsuki, Chem. Soc. Rev. 33, 437 (2004). https://doi.org/10.1039/B304133F

    Article  CAS  PubMed  Google Scholar 

  16. R. Luna-Gracia, B. M. Damian-Murillo, V. Barba, H. Hopfl, H. I. Beltran, and L. S. Zamudio-Rivera, J. Organomet. Chem. 694, 3965 (2009).

    Article  Google Scholar 

  17. M. Azam, S. I. Al-Resayes, A. Trzesowska-Kruszynska, R. Kruszynski, A. Verma, and U. K. Pati, Inorg. Chem. Commun. 46, 73 (2014). https://doi.org/10.1016/j.inoche.2014.05.029

    Article  CAS  Google Scholar 

  18. G. M. Sheldrick, Acta Crystallogr. A64, 112 (2008). https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al, Gaussian 16, v. C.01 (Wallingford CT, USA, 2016).

  20. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

  21. D. J. Becke, Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913

  22. T. H. Dunning, P. J. Hay, and H. F. Schaefer, in Modern Theoretical Chemistry, 3rd Ed., vol. 3 (Plenum, New York, 1976).

    Google Scholar 

  23. V. A. Minaeva, B. F. Minaev, G. V. Baryshnikov, T. N. Kopylova, R. M. Gadirov, and N. S. Eremina, Russ. J. Gen. Chem. 81, 2332 (2011). https://doi.org/10.1134/S1070363211110193

  24. W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 284 (1985).https://doi.org/10.1063/1.448800

  25. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985). https://doi.org/10.1063/1.448975

  26. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971).  https://doi.org/10.1063/1.1674902

  27. M. S. Gordon, D. G. Fedorov, S. R. Druitt, and L. V. Slipchenko, Chem. Rev. 112, 632 (2012).  https://doi.org/10.1021/cr200093j

  28. B. Mennucci, WIREs Comput. Mol. Sci. 2, 386 (2012). https://doi.org/10.1002/wcms.1086

  29. F. Neese, The ORCA program system, version 4.2, University of Bonn (Bonn, Germany, 2009).

    Google Scholar 

  30. M. C. Favas and D. L. Kepert, Prog. Inorg. Chem. 27, 325 (1980). https://doi.org/10.1002/9780470166284.ch5

  31. W. L. Duax and D. A. Norton, Acta Cryst. B33, 3273 (1977). https://doi.org/10.1107/S0567740877010826

    Article  Google Scholar 

  32. G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford University Press, Oxford, 1999).

    Google Scholar 

  33. L. Xiao-Hong, L. Xiang-Ru, and Z. Xian-Zhou, Spectrochim. Acta A, 78, 528 (2011). https://doi.org/10.1016/j.saa.2010.11.022

    Article  CAS  Google Scholar 

  34. Y. Zhang, L.-L. Li, S.-S. Feng, T. Feng, and W.‑K. Dong, Russ. J. Gen. Chem. 91, 2069 (2021).https://doi.org/10.1134/S1070363221100248

  35. S. K. Seth, D. Sarkar, A. Royd, and T. Kar, CrystEngComm 13, 6728 (2011). https://doi.org/10.1039/C1CE05670K

    Article  CAS  Google Scholar 

  36. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, M. and A. Spackman, J. Appl. Cryst, 54, 1006 (2021). https://doi.org/10.1107/S1600576721002910

    Article  CAS  Google Scholar 

  37. S. K. Seth and J. Mol. Struct. 1070, 65 (2014). https://doi.org/10.1016/j.molstruc.2014.04.045

    Article  CAS  Google Scholar 

  38. M. Azam, P. K. Sahoo, R. K. Mohapatra, M. Kumar, A. Ansari, I. S. Moon, A. Chutia, S. I. Al-Resayes, and S. K. Biswal, J. Mol. Struct. 1251, 132039 (2022). https://doi.org/10.1016/j.molstruc.2021.132039

    Article  CAS  Google Scholar 

  39. BIOVIA, Dassault Systèmes, Discovery Studio Visualizer, v21.1.0.20298 (San Diego: Dassault Systèmes, 2020). https://discover.3ds.com/discovery-studio-visualizer-download.

  40. O. Trott and A. J. Olson, J. Comput. Chem. 31, 455 (2010). https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors acknowledge the financial support through the Researchers Supporting Project number (RSP2023R147), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Azam, Pranab K. Mohapatra or Ranjan K. Mohapatra.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

AUTHOR CONTRIBUTION

MA, Designed the experiment; SRB, synthesis; PKM, docking AA & MK, DFT; RKM; Writing and reviewing; SIR, reviewing; RK, Reviewing and editing; ATK, Reviewing and editing.

Supplementary Information

Supporting information includes X-ray crystallography details (Tables S1–S4) and Hirschfeld surfaces (Table S1). CCDC 905280 contains all data related to the crystal.

11502_2023_2968_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Azam, Barik, S.R., Mohapatra, P.K. et al. A Bowl-Shaped Zinc-Salen Complex: Structural Analysis and Molecular Docking Studies against Omicron-S and Delta-S Variants. Russ. J. Inorg. Chem. 68, 1005–1012 (2023). https://doi.org/10.1134/S0036023623600740

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623600740

Keywords:

Navigation