Skip to main content
Log in

Influence of Fe3O4 on Physicochemical and Photocatalytic Properties of Nanosized Barium Titanate

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A procedure has been proposed for the synthesis of a nanocomposite based on barium titanate modified by adding nanodispersed magnetite using the sol–gel method in an acetic acid medium followed by annealing at 800°C. The physicochemical analysis of the products has shown that the matrix phase after annealing is barium titanate with an admixture of barium carbonate, and, in addition to magnetite, there are minor inclusions of hematite and wustite. The elemental composition of nanosized samples has been determined using energy-dispersive X-ray spectroscopy. It has been demonstrated that the concentration of introduced Fe3O4 affects the morphological and phase composition of the composites. The specific surface area and type of porosity of calcined samples have been determined by the low-temperature nitrogen adsorption/desorption method. The effect of BaTiO3, BaTiO3/Fe3O4-1%, and BaTiO3/Fe3O4-10% powders on the adsorption capacity and photocatalytic activity in the process of decolorization of the dye rhodamine B from an aqueous solution in the dark and under the action of ultraviolet light has been studied. The kinetics of adsorption in the dark and photocatalytic decomposition of rhodamine B under the action of ultraviolet radiation in an aqueous suspension of the obtained composites have been analyzed using pseudo-first and pseudo-second order kinetic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. D. Drdlik, V. Marak, K. Maca, et al., Ceram. Int. 48, 24599 (2022). https://doi.org/10.1016/j.ceramint.2022.05.105

    Article  CAS  Google Scholar 

  2. S. Sasikumar, S. Saravanakumar, S. Asath Bahadur, et al., Optik 206, 163752 (2020). https://doi.org/10.1016/j.ijleo.2019.163752

    Article  CAS  Google Scholar 

  3. R. R. Solís, J. Bedia, J. J. Rodríguez, et al., Chem. Eng. J. 409, 128110 (2021). https://doi.org/10.1016/j.cej.2020.128110

    Article  CAS  Google Scholar 

  4. Y. P. Su, L. N. Sim, H. G. L. Coster, et al., J. Membr. Sci. 640, 119861 (2021). https://doi.org/10.1016/j.memsci.2021.119861

    Article  CAS  Google Scholar 

  5. R. Ravanamma and R. K. Muralidhara, K. V. Krishnaiah, et al., Mater. Today Proc. 46, 259 (2021). https://doi.org/10.1016/j.matpr.2020.07.646

    Article  CAS  Google Scholar 

  6. D. Sandi, A. Supriyanto, Anif, et al., IOP Conf. Ser. Mater. Sci. Eng. 107, 012069 (2016). https://doi.org/10.1088/1757-899X/107/1/012069

  7. N. V. Dang, N. T. Dung, P. T. Phong, et al., Phys. B: Condens. Matter 457, 103 (2015). https://doi.org/10.1016/j.physb.2014.09.046

    Article  CAS  Google Scholar 

  8. M. Lal, P. Sharma, and C. Ram, Optik 241, 166934 (2021). https://doi.org/10.1016/j.ijleo.2021.166934

    Article  CAS  Google Scholar 

  9. P. Senthilkumar, D. A. Jency, T. Kavinkumar, et al., ACS Sustain. Chem. Eng. 7, 12032 (2019). https://doi.org/10.1021/acssuschemeng.9b00679

    Article  CAS  Google Scholar 

  10. B. L. Phoon, C. W. Lai, J. C. Juan, et al., Int. J. Hydrogen Energy 44, 14316 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.166

    Article  CAS  Google Scholar 

  11. W. P. Wang, H. Yang, T. Xian, et al., Adv. Sci. Eng. Med. 4, 479 (2012). https://doi.org/10.1166/asem.2012.1215

    Article  CAS  Google Scholar 

  12. M. Thamima, Y. Andou, and S. Karuppuchamy, Ceram. Int. 43, 556 (2017). https://doi.org/10.1016/j.ceramint.2016.09.194

    Article  CAS  Google Scholar 

  13. W. W. Lee, W.-H. Chung, W.-S. Huang, et al., J. Taiwan Inst. Chem. Eng. 44, 660 (2013). https://doi.org/10.1016/j.jtice.2013.01.005

    Article  CAS  Google Scholar 

  14. X. Jiang, H. Wang, X. Wang, et al., Sol. Energy 224, 455 (2021). https://doi.org/10.1016/j.solener.2021.06.032

    Article  CAS  Google Scholar 

  15. R. Tomar, R. Prajapati, S. Verma, et al., Mater. Today Proc. 34, 608 (2021). https://doi.org/10.1016/j.matpr.2020.01.543

    Article  CAS  Google Scholar 

  16. K. Liu, L. Mi, H. Wang, et al., Ceram. Int. 47, 22055 (2021). https://doi.org/10.1016/j.ceramint.2021.04.226

    Article  CAS  Google Scholar 

  17. H. Mohan, M. Ramasamy, V. Ramalingam, et al., J. Hazard. Mater 412, 125330 (2021). https://doi.org/10.1016/j.jhazmat.2021.125330

    Article  CAS  PubMed  Google Scholar 

  18. V. M. Rocha, M. Pereira, L. R. Teles, et al., Mater. Sci. Eng. B 185, 13 (2014). https://doi.org/10.1016/j.mseb.2014.02.004

    Article  CAS  Google Scholar 

  19. A.-G. Niculescu, C. Chircov, and A. M. Grumezescu, Methods 199, 16 (2022). https://doi.org/10.1016/j.ymeth.2021.04.018

    Article  CAS  PubMed  Google Scholar 

  20. K. Landfester and L. P. Ramrez, J. Phys. Condens. Matter 15, 1345 (2003). https://doi.org/10.1088/0953-8984/15/15/304

    Article  Google Scholar 

  21. P. Mishra, S. Patnaik, and K. Parida, Catal. Sci. Technol. 9, 916 (2019). https://doi.org/10.1039/c8cy02462f

    Article  CAS  Google Scholar 

  22. O. L. Evdokimova, A. D. Fedulova (Savicheva), A. V. Evdokimova, et al., Inorg. Mater. Appl. Res 11, 371 (2020). https://doi.org/10.1134/S2075113320020100

    Article  Google Scholar 

  23. A. V. Agafonov, K. V. Ivanov, O. I. Davydova, et al., Russ. J. Inorg. Chem. 56, 1025 (2011). https://doi.org/10.1134/S0036023611070035

    Article  CAS  Google Scholar 

  24. S. A. Shendy, G. H. Shahverdizadeh, M. Babazadeh, et al., Silicon 12, 1735 (2020). https://doi.org/10.1007/s12633-019-00252-z

    Article  CAS  Google Scholar 

  25. J. A. Bennett, C. M. A. Parlett, M. A. Isaacs, et al., ChemCatChem 9, 1648 (2017). https://doi.org/10.1002/cctc.201601269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. K. V. Ivanov, O. V. Alekseeva, and A. V. Agafonov, Inorg. Mater. 56, 494 (2020). https://doi.org/10.1134/S0020168520040068

    Article  CAS  Google Scholar 

  27. P. Sardarian, H. Naffakh-Moosavy, and S. S. S. Afghahi, J. Magn. Magn. Mater. 441, 257 (2017). https://doi.org/10.1016/j.jmmm.2017.05.074

    Article  CAS  Google Scholar 

  28. V. Alfredo Villegas Reyes, J. Isaías De León Ramírez, E. Guevara Hernandez, et al., J. Saudi Chem. Soc. 24, 223 (2020). https://doi.org/10.1016/j.jscs.2019.12.004

    Article  CAS  Google Scholar 

  29. J. L. S. Bell, D. A. Palmer, H. L. Barnes, et al., Geochim. Cosmochim. Acta 58, 4155 (1994). https://doi.org/10.1016/0016-7037(94)90271-2

    Article  CAS  Google Scholar 

  30. Y. Cui, H. Sun, J. Briscoe, et al., Nanotecnology 30, 255702 (2019). https://doi.org/10.1088/1361-6528/ab0b00

    Article  CAS  Google Scholar 

  31. D. H. Kim, S. J. Lee, J. Theerthagiri, et al., Chemosphere 283 (2021). https://doi.org/10.1016/j.chemosphere.2021.131218

  32. S. More, M. V. Khedkar, G. D. Kulkarni, et al., Optik 247, 167913 (2021). https://doi.org/10.1016/j.ijleo.2021.167913

    Article  CAS  Google Scholar 

  33. S. Khalameida, V. Sydorchuk, J. Skubiszewska-Zieba, et al., J. Therm. Anal. Calorim. 101, 779 (2010). https://doi.org/10.1007/s10973-010-0755-3

    Article  CAS  Google Scholar 

  34. J. Mullens, K. Van Werde, G. Vanhoyland, et al., Thermochim. Acta 392393, 29 (2002). https://doi.org/10.1016/s0040-6031(02)00067-9

  35. P. P. Khirade, S. D. Birajdar, A. V. Raut, et al., Ceram. Int. 42, 12441 (2016). https://doi.org/10.1016/j.ceramint.2016.05.021

    Article  CAS  Google Scholar 

  36. A. V. Agafonov, K. V. Ivanov, O. I. Davydova, et al., Russ. J. Inorg. Chem. 56, 1025 (2011). https://doi.org/10.1134/S0036023611070035

    Article  CAS  Google Scholar 

  37. K. S. W. Sing, D. H. Everett, R. A. W. Haul, et al., Pure Appl. Chem. 57, 603 (1985). https://doi.org/10.1515/iupac.57.0007

    Article  CAS  Google Scholar 

  38. K. V. Ivanov, A. V. Noskov, O. V. Alekseeva, et al., Russ. J. Inorg. Chem. 66, 490 (2021). https://doi.org/10.1134/S0036023621040136

    Article  CAS  Google Scholar 

  39. G. Panthi and M. Park, J. Energy Chem. 73, 160 (2022). https://doi.org/10.1016/j.jechem.2022.06.023

    Article  CAS  Google Scholar 

  40. N. Mohammed, N. Grishkewich, R. M. Berry, et al., Cellulose 22, 3725 (2015). https://doi.org/10.1007/s10570-015-0747-3

    Article  CAS  Google Scholar 

  41. O. V. Alekseeva, A. V. Noskov, and A. V. Agafonov, Cellulose 29, 3947 (2022). https://doi.org/10.1007/s10570-022-04546-1

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Shared Facility Center “Upper Volga Regional Center for Physical and Chemical Research.”

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment no. 122040500044-4.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Ivanov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Supplementary Information

X-ray diffraction analysis of the synthesized Fe3O4 powder.

IR spectrum of the synthesized Fe3O4 powder.

11502_2023_2985_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, K.V., Plotvina, A.V. & Agafonov, A.V. Influence of Fe3O4 on Physicochemical and Photocatalytic Properties of Nanosized Barium Titanate. Russ. J. Inorg. Chem. 68, 104–114 (2023). https://doi.org/10.1134/S0036023622601957

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622601957

Keywords:

Navigation