Skip to main content
Log in

Crystal Growth and Heat Capacity of Lithium Molybdate Tungstates

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 December 2022

This article has been updated

Abstract

Single crystals of lithium molybdate tungstates containing 10 and 15 mol % molybdenum were grown by the low-temperature-gradient Czochralski technique. It was shown that the single crystals have the phenakite structure (space group \(R\bar {3}\)). The heat capacity of the Li2W0.85Mo0.15O4 single crystal was measured by differential scanning calorimetry in two temperature ranges: 190–370 and 320–970 K. The heat capacity in the temperature range 190–970 K is well described by the equation Cp = 37.95541 + 0.42875T − 4.87201 × 10–4T2 + 2.15184 × 10–7T3 J/(K mol). It was determined that there are no phase transitions in the Li2W0.85Mo0.15O4 single crystal in the studied temperature range. This makes this single crystal promising for the search for rare events, such as neutrinoless double β-decay and elastic coherent neutrino scattering off nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Change history

REFERENCES

  1. O. Barinova, A. Sadovskiy, I. Ermochenkov, et al., J. Cryst. Growth 468, 365 (2017). https://doi.org/10.1016/j.jcrysgro.2016.10.009

    Article  CAS  Google Scholar 

  2. K. S. Gavrichev, N. N. Smirnova, A. V. Khoroshilov, et al., Russ. J. Inorg. Chem. 52, 727 (2007). https://doi.org/10.1134/S0036023607050129

    Article  Google Scholar 

  3. N. I. Matskevich, V. N. Shlegel, A. L. Sednev, et al., J. Chem. Thermodyn. 143, 106059 (2020). https://doi.org/10.1016/j.jct.2020.106059

    Article  CAS  Google Scholar 

  4. T. L. Simonenko, V. A. Bocharova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 66, 1779 (2021). https://doi.org/10.1134/S0036023621120160

    Article  CAS  Google Scholar 

  5. A. Aliane, I. Avetissov, O. Barinova, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 949, 162784 (2020). https://doi.org/10.1016/j.nima.2019.162784

    Article  CAS  Google Scholar 

  6. Z. A. Fattakhova, E. G. Vovkotrub, and G. Z. Zakharova, Russ. J. Inorg. Chem. 66, 35 (2021). https://doi.org/10.1134/S0036023621010022

    Article  CAS  Google Scholar 

  7. L. M. Kustov, A. L. Kustov, and T. Salmi, Mendeleev Commun. 32, 1 (2022). https://doi.org/10.1016/j.mencom.2022.01.001

  8. F. Xu, G. Zhang, M. Luo, et al., Nat. Sci. Rev. 8, 104 (2021). https://doi.org/10.1093/nsr/nwaa104

  9. A. V. Khoroshilov, G. A. Sharpataya, K. S. Gavrichev, et al., Russ. J. Inorg. Chem. 57, 1123 (2012). https://doi.org/10.1134/S0036023612080074

    Article  CAS  Google Scholar 

  10. M. V. Makarova, P. E. Kazin, Yu. D. Tretyakov, et al., Physica C 419, 61 (2005). https://doi.org/10.1016/j.physc.2004.12.003

  11. C. W. F. T. Pistorius, J. Solid State Chem. 13, 325 (1975). https://doi.org/10.1016/0022-4596(75)90147-4

    Article  CAS  Google Scholar 

  12. V. V. Atuchin, V. L. Bekenev, Yu. A. Borovlev, et al., J. Opt. Adv. Mater. 19, 86 (2017).

    CAS  Google Scholar 

  13. I. R. Pandey, S. Karki, D. J. Daniel, et al., J. Alloys Compd. 860, 158510 (2021). https://doi.org/10.1016/j.jallcom.2020.158510

  14. V. D. Grigorieva, V. N. Shlegel, Y. A. Borovlev, et al., J. Cryst. Growth 523, 125144 (2019). https://doi.org/10.1016/0022-4596(75)90147-4

    Article  CAS  Google Scholar 

  15. L. Berge, R. S. Boiko, M. Chapellier, et al., JINST P06004 (2014). https://doi.org/10.1088/1748-0221/9/06/P06004

  16. I. M. Ivanov, Yu. G. Stenin, V. N. Shlegel, et al., Inorg. Mater. 44, 1330 (2008). https://doi.org/10.1134/S0020168508120121

  17. N. I. Matskevich, T. Wolf, M. Le Tacon, et al., J. Therm. Anal. Calorim. 130, 1125 (2017). https://doi.org/10.1007/s10973-017-6493-z

    Article  CAS  Google Scholar 

  18. I. A. Uspenskaya, Z. S. Vakhovskaya, M. M. Efremova, et al., Russ. J. Phys. Chem. A 80, 529 (2006). https://doi.org/10.1134/S0036024406040078

    Article  CAS  Google Scholar 

  19. D. A. Samoshkin, A. Sh. Agazhanov, and S. V. Stankus, J. Phys.: Conf. Series 2119, 012138 (2021). https://doi.org/10.1088/1742-6596/2119/1/012138

  20. L. Denielou, J. P. Petitet, and C. Tequi, J. Chem. Thermodyn. 7, 901 (1975). https://doi.org/10.1016/0021-9614(75)90100-7

    Article  CAS  Google Scholar 

  21. M. Velazquez, P. Veber, and M. Moutatouia, Solid State Sci. 65, 41 (2017). https://doi.org/10.1016/j.solidstatesciences.2016.12.006

    Article  CAS  Google Scholar 

  22. A. E. Musikhin, V. N. Naumov, M. A. Bespyatov, et al., J. Alloys Compd. 639, 145 (2015). https://doi.org/10.1016/j.jallcom.2015.03.159

    Article  CAS  Google Scholar 

  23. A. E. Musikhin, M. A. Bespyatov, T. M. Kuzin, et al., J. Phys.: Conf. Ser. 2119, 012137 (2021). https://doi.org/10.1088/1742-6596/2119/1/012137

  24. E. Gamsjager and M. Wiessner, Monatsh Chem. 149, 357 (2018). https://doi.org/10.1007/s00706-017-2117-3

    Article  CAS  Google Scholar 

  25. V. N. Naumov and A. E. Musikhin, Comput. Mater. Sci. 130, 257 (2017). https://doi.org/10.1016/j.commatsci.2017.01.025

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-19-00095-P). V. N. Shlegel’, V. D. Grigor’eva, A. N. Semerikova, and V. A. Kuznetsov thank the Ministry of Science and Higher Education of the Russian Federation (project no. 121031700314-5) for using the calorimeter and the setups for growing single crystals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Matskevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

The original online version of this article was revised: Surname of the third author should read Grigorieva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matskevich, N.I., Shlegel’, V.N., Grigorieva, V.D. et al. Crystal Growth and Heat Capacity of Lithium Molybdate Tungstates. Russ. J. Inorg. Chem. 67, 1521–1526 (2022). https://doi.org/10.1134/S0036023622600812

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622600812

Keywords:

Navigation