Skip to main content
Log in

Solid-Phase Equilibria in the SnTe–Sb2Te3–Te System and the Thermodynamic Properties of the Tin–Antimony Tellurides

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The SnTe–Sb2Te3–Te system was studied in the temperature range 300–400 K by X-ray powder diffraction and EMF measurements of (–) SnTe(s.)|liquid electrolyte, Sn2+|(Sn–Sb–Te) (s) (+) reversible concentration cells. An equilibrium solid phase diagram of the system was constructed. All telluride phases of the system, namely, ternary compounds SnSb2Te4 and SnSb4Te7 and SnTe-base (α) and Sb2Te3-base (β) solid solutions, were found to be tie-lined with tellurium. Equations for temperature-dependent EMF in β + Те, β + SnSb4Te7 + Те, SnSb4Te7 + SnSb2Te4 + Те, α + SnSb2Te4 + Те, and α + Те heterogeneous phase fields were derived from EMF measurements, and were used to calculate the partial thermodynamic functions of SnTe in alloys. The thus-obtained data combined with the SnTe thermodynamic functions were used to calculate the partial molar functions of tin in alloys. The thus-obtained values and the equilibrium solid phase diagram of the SnTe–Sb2Te3–Te system, together with the relevant thermodynamic functions of Sb2Te3, were used to calculate the standard Gibbs free energies of formation and enthalpies of formation and the standard entropies of formation for SnSb2Te4, SnSb4Te7, and Sb2Te3- and SnTe-base solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. V. Shevelkov, Russ. Chem. Rev. 77, 1 (2008). https://doi.org/10.1070/RC2008v077n01ABEH003746

    Article  CAS  Google Scholar 

  2. L. E. Shelimova, O. G. Karpinskii, P. P. Konstantinov, et al., Inorg. Mater. 40, 451 (2004). https://doi.org/10.1023/B:INMA.0000027590.43038.a8

    Article  CAS  Google Scholar 

  3. J. Zhang, Y. Yan, H. Xie, et al., Ceram. Int. 45, 16039 (2019). https://doi.org/10.1016/j.ceramint.2019.05.119

    Article  CAS  Google Scholar 

  4. P. Hu, TR. Wei, P. Qiu, et al., ACS Appl. 11, 34046 (2019). https://doi.org/10.1021/acsami.9b12854

    Article  CAS  Google Scholar 

  5. C. Lee, J. N. Kim and J.-Y. Tak, et al., AIP Adv. 8, P. 115213 (2018). https://doi.org/10.1063/1.5047823

    Article  CAS  Google Scholar 

  6. L. Pan, J. Li, D. Berardan, et al., J. Solid State Chem. 225, 168 (2015). https://doi.org/10.1016/j.jssc.2014.12.016

    Article  CAS  Google Scholar 

  7. W. Ma, M. C. Record, J. Tian, et al., Materials 14, 4086 (2021). https://doi.org/10.3390/ma14154086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. P. Guo, A. M. Sarangan, and I. Agha, Appl. Sci. 9, 530 (2019). https://doi.org/10.3390/app9030530

    Article  CAS  Google Scholar 

  9. M. Wuttig and S. Raoux, Z. Anorg. Allg. Chem. 638, 2455 (2012). https://doi.org/10.1002/zaac.201200448

    Article  CAS  Google Scholar 

  10. J. Tominaga, MRS Bull. 43, 347 (2018). https://doi.org/10.1557/mrs.2018.94

    Article  CAS  Google Scholar 

  11. A. Sterzi, G. Manzoni, A. Crepaldi, et al., J. Electron. Spectrosc. Relat. Phenom. 225, 23 (2018). https://doi.org/10.1016/j.elspec.2018.03.004

    Article  CAS  Google Scholar 

  12. Z. Wu, G. Liang, W. K. Pang, et al., Adv. Mater. 32, 1905632 (2020). https://doi.org/10.1002/adma.201905632

    Article  CAS  Google Scholar 

  13. P. Mal, G. Bera, G. R. Turpu, et al., Phys. Chem. Chem. Phys. 21, 15030 (2019). https://doi.org/10.1002/adma.20190563210.1039/c9-cp01494b

    Article  CAS  PubMed  Google Scholar 

  14. Y. Hattori, Y. Tokumoto, K. Kimoto, et al., Sci. Rep. 10, 7957 (2020). https://doi.org/10.1002/adma.20190563210.1038/s41-598-020-64742-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. E. P. Amaladass, S. Sharma, A. T. Satya, et al., AIP Conf. Proc. 1951, 020015 (2018). https://doi.org/10.1063/1.5031723

    Article  CAS  Google Scholar 

  16. M. Nurmamat, K. Okamoto, S. Zhu, et al., ACS Nano 14, 9059 (2020). https://doi.org/10.1021/acsnano.0c04145

    Article  CAS  PubMed  Google Scholar 

  17. I. A. Shvets, I. I. Klimovskikh, Z. S. Aliev, et al., Phys. Rev. 96, 235124 (2017). https://doi.org/10.1103/PhysRevB.96.235124

    Article  Google Scholar 

  18. D. Pacile, S. V. Eremeev, M. Caputo, et al., Phys. Status Solidi RRL 12, 1800341 (2018). https://doi.org/10.1002/pssr.201800341

    Article  CAS  Google Scholar 

  19. R. Vilaplana, J. A. Sans, F. J. Manjon, et al., J. Alloys Compd. 685, 962 (2016). https://doi.org/10.1016/j.jallcom.2016.06.170

    Article  CAS  Google Scholar 

  20. M. B. Babanly, E. V. Chulkov, Z. S. Aliev, et al., Russ. J. Inorg. Chem. 62, 1703 (2017). https://doi.org/10.1134/S0036023617130034

    Article  CAS  Google Scholar 

  21. M. B. Babanly, L. F. Mashadiyeva, D. M. Babanly, et al., Russ. J. Inorg. Chem. 13, 1649 (2019). https://doi.org/10.1134/S0036023619130035

    Article  Google Scholar 

  22. A. G. Morachevskii, G. F. Voronin, V. A. Geiderikh, and I. B. Kutsenok, Electrochemical Research Methods in the Thermodynamics of Metallic Systems (ITsK Akademkniga, Moscow, 2003) [in Russian].

  23. M. B. Babanly and Yu. A. Yusibov, Electrochemical Methods in Thermodynamics of Inorganic Systems (ELM, Baku, 2011) [in Russian].

    Google Scholar 

  24. V. P. Vassiliev and V. A. Lysenko, Electrochim. Acta 222, 1770 (2016). https://doi.org/10.1016/j.electacta.2016.11.075

    Article  CAS  Google Scholar 

  25. V. Vassiliev and W. Gong, Electrochemical Cells—New Advances in Fundamental Researches and Applications, Ed. by Yan Shao (IntechOpen, 2012). https://doi.org/10.5772/39007

  26. G. S. Hasanova, A. I. Aghazade, S. Z. Imamaliyeva, et al., JOM 73, 1511 (2021). https://doi.org/10.1007/s11837-021-04621-1

    Article  CAS  Google Scholar 

  27. S. Z. Imamaliyeva, S. S. Musayeva, D. M. Babanly, et al., Thermochim. Acta 679, 178319 (2019). https://doi.org/10.1016/j.tca.2019.178319

    Article  CAS  Google Scholar 

  28. E. G. Osadchii, Ya. I. Korepanov, and N. N. Zhdanov, Instrum. Exper. Techniques 59, 302 (2016). https://doi.org/10.1134/S0020441216010255

    Article  CAS  Google Scholar 

  29. E. N. Ismailova, L. F. Mashadieva, D. M. Babanly, et al., Russ. J. Inorg. Chem. 61, 96 (2021). https://doi.org/10.1134/S0036023621010046

    Article  Google Scholar 

  30. I. J. Alverdiev, V. A. Abbasova, Y. A. Yusibov, et al., Russ. J. Electrochem. 54, 195 (2018). https://doi.org/10.1134/S1023193518020027

    Article  CAS  Google Scholar 

  31. M. Moroz, F. Tesfaye, P. Demchenko, et al., Thermochim. Acta 698, 178862 (2021). https://doi.org/10.1016/j.tca.2021.178862

    Article  CAS  Google Scholar 

  32. M. Moroz, F. Tesfaye, P. Demchenko, et al., Energies 14, 1314 (2021). https://doi.org/10.3390/en14051314

    Article  CAS  Google Scholar 

  33. L. E. Shelimova, V. N. Tomashik, and V. I. Grytsiv, State Diagrams in Semiconductor Materials Science. Handbook (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  34. E. I. Elagina and N. K. Abrikosov, Russ. J. Inorg. Chem. 4, 1638 (1959).

    CAS  Google Scholar 

  35. T. Hirai, Y. Takeda, and K. Kurata, J. Less-Common Met. 13, 352 (1967). https://doi.org/10.1016/0022-5088(67)90143-9

    Article  CAS  Google Scholar 

  36. A. Stegherr, Philips Res. Rep. 24, 72 (1969).

    Google Scholar 

  37. F. N. Guseinov, A. E. Seidzade, Y. A. Yusibov, and M. B. Babanly, Inorg Mater. 53, 354 (2017). https://doi.org/10.1134/S0020168517040057

    Article  CAS  Google Scholar 

  38. A. E. Seidzade, E. N. Orujlu, T. Doert, et al., J. Phase Equilib. Diffus. 42, 373 (2021). https://doi.org/10.1007/s11669-021-00888-8

    Article  CAS  Google Scholar 

  39. N. K. Abrikosov, V. F. Bankina, L. V. Poretskaya, et al., Semiconducting II–VI, IV–VI, and V–VI Compounds (Springer US, 1969).

    Google Scholar 

  40. N. K. Abrikosov and V. F. Bankina, Russ. J. Inorg. Chem. 3, 659 (1958).

    CAS  Google Scholar 

  41. L. E. Shelimova, O. G. Karpinsky, V. I. Kosyakov, et al., J. Struct. Chem. 41, 81 (2000). https://doi.org/10.1007/BF02684732

    Article  CAS  Google Scholar 

  42. G. S. Hasanova, A. I. Aghazade, D. M. Babanly, et al., J. Therm. Anal. Calorim. (2021). https://doi.org/10.1007/s10973-021-10975-0

  43. T. M. Alakbarova, H. J. Meyer, E. N. Orujlu, et al., Phase Transit. 94, 366 (2021). https://doi.org/10.1080/01411594.2021.1937625

    Article  CAS  Google Scholar 

  44. T. B. Massalski, Binary Alloys Phase Diagrams (ASM International, Materials park, Ohio, 1990).

    Google Scholar 

  45. Database of Thermal Constants of Substances, Ed. by V. S. Yungman (2006). http://www.chem.msu.su/cgi-bin/tkv.

  46. O. Kubaschewski, C. B. Alcock, and P. J. Spenser, Materials Thermochemistry, Sixth Ed. (Pergamon Press, 1993).

    Google Scholar 

  47. Ya. I. Gerasimov, A. N. Krestovnikov, and S. I Gorbov, Chemical Thermodynamics in Non-Ferrous Metallurgy. Directory (Metallurgiya, Moscow, 1974) [in Russian].

    Google Scholar 

  48. B. T. Melekh, S. A. Semenkovich, and A. A. Andreev, Thermodynamic Properties of Intermetallic Phases (Izd-vo IPM, Kiev, 1982) [in Russian].

    Google Scholar 

  49. Ya. I. Gerasimov and A. V. Nikol’skaya, Proceedings on the Fourth Symposium on Problems in the Metallurgy and Physics of Semiconductor Materials, 1961, p. 30.

  50. S. A. Semenkovich and B. T. Melekh, Chemical Bonds in Solids, Ed. by N. N. Sirota (Consultants Bureau, New York, 1972). https://doi.org/10.1007/978-1-4684-1686-2_27

  51. I. H. McAteer and H. Seltz, J. Am. Chem. Soc. 58, 2081 (1936).

    Article  CAS  Google Scholar 

Download references

Funding

The work was fulfilled in the frame of the scientific program of the “Candidate Spintronics Materials and Quantum Computations” international laboratory instituted by the Institute of Catalysis and Inorganic Chemistry of the National Academy of Sciences of Azerbaijan (Azerbaijan) and the Donostia International Physical Center (Spain), and was in part supported by the Science Development Foundation under the President of the Azerbaijan Republic (project No. EIF-GAT-5-2020-3(37)-12/02/4-M-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Babanly.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidzade, A.E., Orujlu, E.N., Babanly, D.M. et al. Solid-Phase Equilibria in the SnTe–Sb2Te3–Te System and the Thermodynamic Properties of the Tin–Antimony Tellurides. Russ. J. Inorg. Chem. 67, 683–690 (2022). https://doi.org/10.1134/S003602362205014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362205014X

Keywords:

Navigation