Skip to main content
Log in

Effect of the Graphitic Carbon Nitride Synthesis Atmosphere on its Activity in the Photocatalytic Generation of Hydrogen Peroxide

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Materials based on graphitic carbon nitride (g-C3N4) are intensely studied as promising photocatalysts of different reactions, hydrogen peroxide formation including. Effect of synthesis parameters of g-C3N4 obtained by thermolysis of melamine, urea, and thiourea on its composition and photocatalytic activity has been studied. The photocatalytic activity of obtained materials has been studied in the reaction of oxidative decomposition of organic dye and in oxygen reduction to form hydrogen peroxide. It has been shown that, in spite of incomplete polycondensation after thermolysis, the obtained samples display high values of photocatalytic activity. The work has shown that the photocatalytic activity of samples obtained at 550°С is by factor 2–4 higher than that for samples obtained at 500 and 600°C. It has been shown that the preparation of g-C3N4 from thiourea in air leads to photocatalyst with maximal activity, whereas melamine and urea produce the best catalyst under nitrogen atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. M. Zhang, C. W. An, D. F. Zhang, et al., Russ. J. Inorg. Chem. 66, 679 (2021). https://doi.org/10.1134/S0036023621050223

    Article  CAS  Google Scholar 

  2. J. Zhu, P. Xiao, H. Li, et al., ACS Appl. Mater. Interfaces 6, 16449 (2014). https://doi.org/10.1021/am502925j

    Article  CAS  PubMed  Google Scholar 

  3. S. Cao, J. Low, J. Yu, et al., Adv. Mater. 27, 2150 (2015). https://doi.org/10.1002/adma.201500033

    Article  CAS  PubMed  Google Scholar 

  4. X. Wang, S. Blechert, and M. Antonietti, ACS Catal. 2, 1596 (2012). https://doi.org/10.1021/cs300240x

    Article  CAS  Google Scholar 

  5. M. I. Chebanenko, N. V. Zakharova, and V. I. Popkov, Russ. J. Appl. Chem. 93, 494 (2020). https://doi.org/10.1134/S1070427220040035

    Article  CAS  Google Scholar 

  6. M. I. Chebanenko, N. V. Zakharova, A. A. Lobinsky, et al., Semiconductors 53, 2072 (2019). https://doi.org/10.1134/S106378261912008X

    Article  CAS  Google Scholar 

  7. L. Wang and W. A. Daoud, Appl. Surf. Sci. 324, 532 (2015). https://doi.org/10.1016/j.apsusc.2014.10.11

    Article  CAS  Google Scholar 

  8. S. S. Shinde, A. Sami, and J.-H. Lee, ChemCatChem 7, 3873 (2015). https://doi.org/10.1002/cctc.201500701

    Article  CAS  Google Scholar 

  9. L. He, M. Fei, J. Chen, et al., Mater. Today (2019). https://doi.org/10.1016/j.mattod.2018.06.008

  10. S.-X. Zhou, X.-Y. Tao, J. Ma, et al., Vacuum 149, 175 (2018). https://doi.org/10.1016/j.vacuum.2017.12.019

    Article  CAS  Google Scholar 

  11. S. C. Yan, Z. S. Li, and Z. G. Zou, Langmuir 25, 10397 (2009). https://doi.org/10.1021/la900923z

    Article  CAS  PubMed  Google Scholar 

  12. E. G. Gillan, Chem. Mater. 12, 3906 (2000). https://doi.org/10.1021/cm000570y

    Article  CAS  Google Scholar 

  13. Y. Zheng, L. Lin, B. Wang, et al., Angew. Chem., Int. Ed. Engl. 54, 12868 (2015). https://doi.org/10.1002/anie.201501788

    Article  CAS  Google Scholar 

  14. X. Li, J. Yu, J. Low, et al., J. Mater. Chem. A 3, 2485 (2015). https://doi.org/10.1039/C4TA04461D

    Article  CAS  Google Scholar 

  15. I. Papailias, T. Giannakopoulou, N. Todorova, et al., Appl. Surf. Sci. 358, 278 (2015). https://doi.org/10.1016/j.apsusc.2015.08.097

    Article  CAS  Google Scholar 

  16. Z. Zhao, Y. Sun, Q. Luo, et al., Sci. Rep. 5, 14643 (2015). https://doi.org/10.1038/srep14643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. H. Hou, X. Zeng, and X. Zhang, Angew. Chem., Int. Ed. Engl. 59, 17356 (2020). https://doi.org/10.1002/anie.201911609

    Article  CAS  Google Scholar 

  18. C. Chu, D. Huang, Q. Zhu, et al., ACS Catal. 9, 626 (2019). https://doi.org/10.1021/acscatal.8b03738

    Article  CAS  Google Scholar 

  19. Y. Shiraishi, S. Kanazawa, Y. Kofuji, et al., Angew. Chem., Int. Ed. Engl. 53, 13454 (2014). https://doi.org/10.1002/anie.201407938

    Article  CAS  Google Scholar 

  20. K. Sahel, L. Elsellami, I. Mirali, et al., Appl. Catal., B 188, 106 (2016). https://doi.org/10.1016/j.apcatb.2015.12.044

    Article  CAS  Google Scholar 

  21. H. Dong, X. Guan, D. Wang, et al., Chemosphere 85, 1115 (2011). https://doi.org/10.1016/j.chemosphere.2011.07.029

    Article  CAS  PubMed  Google Scholar 

  22. R. Baciocchi, M. R. Boni, and L. D’Aprile, J. Hazard. Mater. 107, 97 (2004). https://doi.org/10.1016/j.jhazmat.2003.09.008

    Article  CAS  PubMed  Google Scholar 

  23. K. Jóźwiakowski, M. Marzec, J. Fiedurek, et al., Sep. Purif. Technol. 173, 357 (2017). https://doi.org/10.1016/j.seppur.2016.08.047

    Article  CAS  Google Scholar 

  24. T. Wang, L. Yang, B. Zhang, et al., Colloids Surf., B: Biointerfaces 80, 94 (2010). https://doi.org/10.1016/j.colsurfb.2010.05.041

    Article  CAS  PubMed  Google Scholar 

  25. O. R. Simonova, S. A. Zdanovich, S. V. Zaitseva, et al., Russ. J. Inorg. Chem. 65, 1006 (2020). https://doi.org/10.1134/S0036023620070207

    Article  CAS  Google Scholar 

  26. A. M. Lebedev, K. A. Menshikov, V. G. Nazin, et al., J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 15, 1039. https://doi.org/10.1134/S1027451021050335

  27. V. A. Lebedev, V. V. Sudin, D. A. Kozlov, et al., Nanotechnologies Russ. 11, 20 (2016). https://doi.org/10.1134/S1995078016010092

    Article  CAS  Google Scholar 

  28. D. A. Kozlov, A. B. Shcherbakov, T. O. Kozlova, et al., Molecules 25 (1), 154 (2019). https://doi.org/10.3390/molecules25010154

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 20-33-90333). The study was carried out using equipment of the Shared Facility Center, Moscow State University, “Technologies of production of nanostructurized materials and their integrated study” purchased by the Moscow State University in the context of the Nauka National Project and the MSU Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Garshev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, D.A., Artamonov, K.A., Revenko, A.O. et al. Effect of the Graphitic Carbon Nitride Synthesis Atmosphere on its Activity in the Photocatalytic Generation of Hydrogen Peroxide. Russ. J. Inorg. Chem. 67, 715–720 (2022). https://doi.org/10.1134/S0036023622050102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622050102

Keywords:

Navigation