Skip to main content
Log in

Formation of the Solid Phase in the Liquid Cathode Glow Discharge above Solutions of KMnO4

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The paper describes the formation of a solid phase in aqueous solutions of potassium permanganate under the action of a direct current discharge in air above the liquid phase at atmospheric pressure. The discharge current was 40 mA (the total input power was 6 W). The discharge was ignited in the system without contact of the electrodes with the liquid phase. Assumptions were made about considerable difference between the mechanisms of reactions induced by the discharge and reactions that take place in solutions of transition metal salts under the same conditions. The obtained solid product was investigated by X-ray diffraction analysis and thermogravimetric analysis and by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. S. Akishev, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 62, 26 (2019). https://doi.org/10.6060/ivkkt.20196208.5908

    Article  CAS  Google Scholar 

  2. B. Jiang, J. Zheng, S. Qiu, et al., Chem. Eng. J. 236, 348 (2014). https://doi.org/10.1016/j.cej.2013.09.090

    Article  CAS  Google Scholar 

  3. G. I. Gusev, A. A. Gushchin, V. I. Grinevich, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 63, 88 (2020). https://doi.org/10.6060/ivkkt.20206307.6182

    Article  CAS  Google Scholar 

  4. M. A. Sevost’yanov and A. S. Lysenkov, Russ. J. Inorg. Chem. 66, 1055 (2021). https://doi.org/10.1134/S0036023621080258

    Article  Google Scholar 

  5. G. Saito and T. Akiyama, J. Nanomater. 123696 (2015). https://doi.org/10.1155/2015/123696

  6. V. V. Rybkin and D. A. Shutov, Plasma Chem. Plasma Process. 35, 107 (2015). https://doi.org/10.1007/s11090-014-9596-3

    Article  CAS  Google Scholar 

  7. P. J. Bruggeman, R. R. Frontiera, U. R. Kortshagen, et al., J. Appl. Phys. 129, 200902 (2021). https://doi.org/10.1063/5.0044261

    Article  CAS  Google Scholar 

  8. D. A. Shutov, V. V. Rybkin, A. N. Ivanov, et al., High Energy Chem. 51, 65 (2017). https://doi.org/10.1134/S0018143917010118

    Article  CAS  Google Scholar 

  9. D. A. Shutov, K. V. Smirnova, M. V. Gromov, et al., Plasma Chem. Plasma Process. 38, 107 (2018). https://doi.org/10.1007/s11090-017-9856-0

    Article  CAS  Google Scholar 

  10. Y. Kimbrough, A. M. Cohen, L. Winer, et al., Crit. Rev. Environ. Sci. Technol. 29, 1 (1999). https://doi.org/10.1080/10643380701643650

    Article  CAS  Google Scholar 

  11. D. A. Shutov, A. V. Sungurova, A. Choukourov, and V. V. Rybkin, Plasma Chem. Plasma Process. 36, 1253 (2016). https://doi.org/10.1007/s11090-016-9725-2

    Article  CAS  Google Scholar 

  12. Z. Ke, Q. Huang, H. Zhang, and Z. Yu, Environ. Sci. Technol. 45, 7841 (2011). https://doi.org/10.1021/es201680m

    Article  CAS  PubMed  Google Scholar 

  13. D. A. Shutov, A. V. Sungurova, K. V. Smirnova, and V. V. Rybkin, High Energy Chem. 52, 95 (2018). https://doi.org/10.1134/S0018143918010125

    Article  CAS  Google Scholar 

  14. D. A. Shutov, A. V. Sungurova, K. V. Smirnova, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 61, 23 (2018). https://doi.org/10.6060/ivkkt.20186109-10.5802

    Article  CAS  Google Scholar 

  15. A. A. Egorova, T. M. Bushkova, I. V. Kolesnik, et al., Russ. J. Inorg. Chem. 66, 146 (2021). https://doi.org/10.1134/S0036023621020066

    Article  CAS  Google Scholar 

  16. O. I. Gyrdasova, V. N. Krasil’nikov, and G. V. Bazuev, Russ. J. Inorg. Chem. 54, 1035 (2009). https://doi.org/10.1134/S0036023609070080

    Article  Google Scholar 

  17. R. F. Korotkov, A. E. Baranchikov, O. V. Boytsova, et al., Russ. J. Inorg. Chem. 61, 129 (2016). https://doi.org/10.1134/S0036023616020091

    Article  CAS  Google Scholar 

  18. A. Altomare, N. Corriero, C. Cuocci, et al., J. Appl. Crystallogr. 48, 598 (2015). https://doi.org/10.1107/S1600576715002319

    Article  CAS  Google Scholar 

  19. D. A. Shutov, N. A. Batova, and V. V. Rybkin, High Energy Chem. 54, 59 (2020). https://doi.org/10.1134/S0018143920010117

    Article  CAS  Google Scholar 

  20. D. A. Shutov, A. N. Ivanov, V. V. Rybkin, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 63, 91 (2020). https://doi.org/10.6060/ivkkt.20206302.6194

    Article  CAS  Google Scholar 

  21. Y. D. Kondrashev and A. I. Zaslavskii, Izv. Akad. Nauk SSSR 15, 179 (1951).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using equipment of the Center for Collective Use of Research Equipment, Ivanovo State University of Chemistry and Technology (supported by the Ministry of Education and Science of Russia, agreement no. 075-15-2021-671).

Funding

This work was supported by the Ministry of Higher Education and Science of the Russian Federation, project no. FZZW-2020-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Shutov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, K.V., Ivanov, A.N., Shutov, D.A. et al. Formation of the Solid Phase in the Liquid Cathode Glow Discharge above Solutions of KMnO4. Russ. J. Inorg. Chem. 67, 262–266 (2022). https://doi.org/10.1134/S0036023622030123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622030123

Keywords

Navigation