Skip to main content

Advertisement

Log in

Transfer of Liquid Cathode Components to the Gas Phase and Their Effect on the Parameters of the Atmospheric Pressure DC Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The transfer of solvent and components of dissolved substances from aqueous solutions to the gas phase under the action of atmospheric pressure air glow discharge was experimentally studied. solutions of NaCl, KCl, CuCl2, MgCl2, CaCl2, SrCl2, BaCl2, NaNO3, KNO3, Ba(NO3)2, Na2SO4, K2SO4, CuSO4 with concentrations of 0.1–0.5 mol/L were used as the cathodes of DC discharge at a current of 10–70 mA. The influence of the solution composition on cathode voltage drop and the electric field strength in plasma has been shown. Plasma emission spectra showed the appearance of metal atoms in the plasma requires threshold discharge current or threshold power input to the liquid cathode by ion bombardment. The threshold power values depend on the mass of hydrated cations and their concentration in solution. The efficiency of the transfer processes was characterized by transfer coefficients—the number of particles transferred from the liquid to the gas phase per one ion bombarding the cathode. Dependences of the transfer coefficients on the power dissipated in the cathode region and on the hydration energy of the cations were obtained. Experimental data on the rate of condensate accumulation in the special trap were used to estimate the concentrations of water molecules in the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bo Jiang, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, Xue Q (2012) Chem Eng J 236:348

    Google Scholar 

  2. Du CM, Wang J, Zhang L, Li HX, Liu H, Xiong Y (2012) New J Phys 14:013010

    Article  Google Scholar 

  3. Yang Y, Cho YI, Fridman A (2012) Plasma discharge in liquid: water treatment and applications. CRC Press, New York

    Google Scholar 

  4. Titov VA, Shikova TG, Rybkin VV, Ageeva TA, Choi HS (2006) High Temp Mater Process 10:467

    Article  CAS  Google Scholar 

  5. Choi HS, Shikova TG, Titov VA, Rybkin VV (2006) J Coll Interface Sci 300:640

    Article  CAS  Google Scholar 

  6. Titov VA, Rybkin VV, Shikova TG, Ageeva TA, Golubchikov OA, Choi HS (2005) Surf Coat Technol 199:231

    Article  CAS  Google Scholar 

  7. Mariotti D, Sankaran RM (2010) J Phys D Appl Phys 43:323001

    Article  Google Scholar 

  8. Saito G, Akiyama T (2015) J Nanomater 2015:123696

    Article  Google Scholar 

  9. Takai O (2008) Pure Appl Chem 80:2003

    Article  CAS  Google Scholar 

  10. Webb MR, Andrade FJ, Gamez G, McCrindle R, Hieftje GM (2005) J Anal At Spectrom 20:1218

    Article  CAS  Google Scholar 

  11. Mezei P, Cserfalvi T (2007) Appl Spectrosc Rev 42:573

    Article  CAS  Google Scholar 

  12. Bencs L, Laczai N, Mezei P, Cserfalvi T (2015) Spectrochim Acta, Part B 107:139

    Article  CAS  Google Scholar 

  13. Yang C, Wang L, Zhu Z, Jin L, Zheng H, Belshaw NS, Hu S (2016) Talanta 155:314

    Article  CAS  Google Scholar 

  14. Bruggeman PJ, Kushner MJ, Locke BR et al (2016) Plasma Sources Sci Technol 25:053002

    Article  Google Scholar 

  15. Bruggeman P, Leys C (2009) J Phys D Appl Phys 5:053001

    Article  Google Scholar 

  16. Titov VA, Rybkin VV, Maximov AI, Choi HS (2005) Plasma Chem Plasma Process 25:503

    Article  CAS  Google Scholar 

  17. Mezei P, Cserfalvi T (2012) Sensors 12:6576

    Article  CAS  Google Scholar 

  18. Maximov AI, Khlustova AV (2007) High Temp Mater Process 11:527

    Article  CAS  Google Scholar 

  19. Verreycken T, Schram DC, Leys C, Bruggeman P (2010) Plasma Sources Sci Technol 19:045004

    Article  Google Scholar 

  20. Kutepov AM, Zakharov AG, Maksimov AI, Titov VA (2003) High Energy Chem 37:362

    Article  Google Scholar 

  21. Khlyustova AV, Sirotkin NA, Maximov AI (2010) High Energy Chem 44:75

    Article  CAS  Google Scholar 

  22. Sirotkin NA, Titov VA (2016) Plasma Phys Tech 3:126

    Google Scholar 

  23. Cserfalvi T, Mezei P (2005) J Anal At Spectrom 20:939

    Article  CAS  Google Scholar 

  24. Maksimov AI, Titov VA, Khlyustova AV (2004) High Energy Chem 38:196

    Article  CAS  Google Scholar 

  25. Webb MR, Andrade FJ, Hieftje GM (2007) Anal Chem 79:7807

    Article  CAS  Google Scholar 

  26. Shirai N, Matsui K, Ibuka S, Ishii S (2007) IEEE Trans Plasma Sci 39:2210

    Article  Google Scholar 

  27. Sirotkin NA, Titov VA (2017) J Phys: Conf Ser 789:012054

    Google Scholar 

  28. Ecker G, Emeleus KG (1954) Proc Phys Soc Sec B 67:546

    Article  Google Scholar 

  29. Khlyustova AV, Dydykin MG, Maksimov AI, Polyakov MS (2008) Surf Eng Appl Electrochem 44:370

    Article  Google Scholar 

  30. Holler FJ, Skoog DA, West DM (1996) Fundamentals of analytical chemistry. Saunders College Pub, Philadelphia

    Google Scholar 

  31. Titov VA, Rybkin VV, Smirnov SA, Kulentsan AI, Choi HS (2006) Plasma Chem Plasma Process 26:543

    Article  CAS  Google Scholar 

  32. Maxwell KL, Hudson MK (2005) J. Pyrotech. 21:59

    CAS  Google Scholar 

  33. Maehler J, Persson I (2011) Inorg Chem 51:425

    Article  Google Scholar 

  34. Maximov AI, Kuzmicheva LA, Khlustova AV, Titova YV, Dydykin MG (2007) Mendeleev Commun 17:294

    Article  CAS  Google Scholar 

  35. Schwartz AJ, Ray SJ, Elish E, Storey AP, Rubinshtein AA, Chan GCY, Hieftje GM (2012) Talanta 102:26

    Article  CAS  Google Scholar 

  36. Nikiforov AY (2008) High Energy Chem 43:235

    Article  Google Scholar 

  37. Sirotkin NA, Titov VA (2016) Appl Phys 6:25

    Google Scholar 

  38. Maksimov AI, Khlyustova AV (2009) High Energy Chem 43:51

    Article  CAS  Google Scholar 

  39. Shirai N, Ichinose K, Uchida S, Tochikubo F (2011) Plasma Sources Sci Technol 20:034013

    Article  Google Scholar 

  40. Bobkova E, Smirnov S, Zalipaeva Y, Rybkin V (2014) Plasma Chem Plasma Process 34:721

    Article  CAS  Google Scholar 

  41. Rybkin VV, Smirnov SA, Titov VA, Arzhakov DA (2010) High Temp 48:476

    Article  CAS  Google Scholar 

  42. Sirotkin NA, Khlyustova AV, Maksimov AI (2014) Surf Eng Appl Electrochem 50:323

    Article  Google Scholar 

  43. Manion JA, Huie RE, Levin RD et al (2015) NIST chemical kinetics database, NIST standard reference database 17, Version 7.0 (Web Version), Release 1.6.8, Data version 2015.12. Gaithersburg, Maryland, pp 20899–8320. http://kinetics.nist.gov/

  44. Plasma Data Exchange Project: http://fr.lxcat.net. Retrieved 7 July 2017

Download references

Acknowledgements

The study was supported by Russian Foundation for Basic Research according to the research project 16–33–60061 mol_a_dk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Sirotkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirotkin, N.A., Titov, V.A. Transfer of Liquid Cathode Components to the Gas Phase and Their Effect on the Parameters of the Atmospheric Pressure DC Discharge. Plasma Chem Plasma Process 37, 1475–1490 (2017). https://doi.org/10.1007/s11090-017-9840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9840-8

Keywords

Navigation