Skip to main content
Log in

The Potential of the Wilson Method in the Calculation of the Thermodynamic Properties of Oxide Systems at High Temperatures

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The potential of the Wilson semiempirical method was illustrated in the calculation of the thermodynamic properties of both binary and ternary systems containing rare earth oxides from the data on the corresponding binary systems at high temperatures. An analysis was made of the possibility to calculate the energy parameters of the interaction between components using the coefficients of the Wilson equation, which were found for the first time, in binary oxide systems at high temperatures. By the examples of the Sm2O3–Y2O3–HfO2, Sm2O3–ZrO2–HfO2, and Y2O3–ZrO2–HfO2 systems at temperatures above 2000 K using the data on the corresponding binary systems obtained earlier by high-temperature mass spectrometry, the excess Gibbs energy was calculated by the Wilson approach in comparison with the results obtained by the Redlich–Kister and Kohler methods. It was shown that the best agreement between the experimental and calculated values of the excess Gibbs energy of the above systems was observed in the case of using the Wilson method as compared to the Redlich-Kister and Kohler methods for the concentration ranges that are significantly remote from the binary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. N. T. Kuznetsov, Russ. J. Inorg. Chem. 59, 643 (2014). https://doi.org/10.1134/S0036023614070122

    Article  CAS  Google Scholar 

  2. V. P. Danilov, N. T. Kuznetsov, V. M. Novotortsev, Zh. Neorg. Khim. 59, 836 (2014). https://doi.org/10.7868/s0044457x14070058

    Article  Google Scholar 

  3. V. L. Stolyarova, V. A. Vorozhtcov, A. L. Shilov, and T. V. Sokolova, Pure Appl. Chem. 92, 1259 (2020). https://doi.org/10.1515/pac-2019-1217

    Article  CAS  Google Scholar 

  4. S. V. Ushakov and A. Navrotsky, J. Am. Ceram. Soc. 95, 1463 (2012). https://doi.org/10.1111/j.1551-2916.2012.05102.x

    Article  CAS  Google Scholar 

  5. A. G. Morachevskii, G. F. Voronin, V. A. Geiderikh, and I. B. Kutsenok, Electrochemical Methods in Thermodynamics of Metallic Systems (Akademkniga, Moscow, 2003) [in Russian].

    Google Scholar 

  6. J. Drowart, C. Chatillon, J. Hastie, and D. Bonnell, Pure Appl. Chem. 77, 683 (2005). https://doi.org/10.1351/pac200577040683

    Article  CAS  Google Scholar 

  7. G. A. Semenov and V. L. Stolyarova, Mass Spectrometric Study of the Evaporation of Oxide Systems (Nauka, Leningrad, 1990) [in Russian].

    Google Scholar 

  8. V. L. Stolyarova, Russ. Chem. Rev. 85, 60 (2016). https://doi.org/10.1070/RCR4549

    Article  CAS  Google Scholar 

  9. V. L. Stolyarova, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 64, 258 (2019). https://doi.org/10.1016/j.calphad.2018.12.013

    Article  CAS  Google Scholar 

  10. O. Redlich and A. T. Kister, Ind. Eng. Chem. 40, 345 (1948). https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  11. F. Kohler, Monatsh. Chem. 91, 738 (1960). https://doi.org/10.1007/BF00899814

    Article  CAS  Google Scholar 

  12. E. N. Kablov, V. L. Stolyarova, S. I. Lopatin, et al., Rapid Commun. Mass Spectrom. 31, 1137 (2017). https://doi.org/10.1002/rcm.7892

    Article  CAS  PubMed  Google Scholar 

  13. E. N. Kablov, V. L. Stolyarova, V. A. Vorozhtcov, et al., Rapid Commun. Mass Spectrom. 33, 1537 (2019). https://doi.org/10.1002/rcm.8501

    Article  CAS  PubMed  Google Scholar 

  14. E. N. Kablov, V. L. Stolyarova, V. A. Vorozhtcov, et al., Rapid Commun. Mass Spectrom. 34, e8693 (2020). https://doi.org/10.1002/rcm.8693

    Article  CAS  PubMed  Google Scholar 

  15. A. G. Morachevskii, L. B. Tsymbulov, E. Y. Kolosova, and L. S. Tsemekhman, Russ. J. Appl. Chem. 78, 57 (2005). https://doi.org/10.1007/s11167-005-0231-1

    Article  CAS  Google Scholar 

  16. A. G. Morachevskii, E. Y. Kolosova, L. S. Tsemekhman, and L. B. Tsymbulov, Russ. J. Appl. Chem. 80, 1040 (2007). https://doi.org/10.1134/S107042720707004X

    Article  CAS  Google Scholar 

  17. G. M. Wilson, J. Am. Chem. Soc. 86, 127 (1964). https://doi.org/10.1021/ja01056a002

    Article  CAS  Google Scholar 

  18. R. V. Orye and J. M. Prausnitz, Ind. Eng. Chem. 57, 18 (1965). https://doi.org/10.1021/ie50665a005

    Article  CAS  Google Scholar 

  19. C. M. McDonald and C. A. Floudas, Ind. Eng. Chem. Res. 34, 1674 (1995). https://doi.org/10.1021/ie00044a020

    Article  CAS  Google Scholar 

  20. K. R. Reddy, D. B. K. Kumar, G. S. Rao, et al., J. Chem. Eng. Data 57, 1412 (2012). https://doi.org/10.1021/je3002078

    Article  CAS  Google Scholar 

  21. X. Xu, P. P. Madeira, J. A. Teixeira, and E. A. Macedo, Fluid Phase Equilib. 213, 53 (2003). https://doi.org/10.1016/S0378-3812(03)00185-7

    Article  CAS  Google Scholar 

  22. R. Sadeghi, J. Chem. Thermodyn. 37, 55 (2005). https://doi.org/10.1016/j.jct.2004.08.007

    Article  CAS  Google Scholar 

  23. E. Zhao, M. Yu, R. E. Sauvé, and M. K. Khoshkbarchi, Fluid Phase Equilib. 173, 161 (2000). https://doi.org/10.1016/S0378-3812(00)00393-9

    Article  CAS  Google Scholar 

  24. I. V. Derevich, V. S. Ermolaev, N. V. Zol’nikova, and V. Z. Mordkovich, Theor. Found. Chem. Eng. 47, 191 (2013). https://doi.org/10.1134/S0040579513020024

    Article  CAS  Google Scholar 

  25. PingTao. Dong, Thermochim. Acta 363, 105 (2000). https://doi.org/10.1016/S0040-6031(00)00603-1

    Article  Google Scholar 

  26. A. A. Korolev, S. A. Krayukhin, and G. I. Mal’tsev, Russ. Metall. 2018, 473 (2018). https://doi.org/10.1134/S0036029518050075

    Article  Google Scholar 

  27. V. L. Stolyarova, Rapid Commun. Mass Spectrom. 7, 1022 (1993). https://doi.org/10.1002/rcm.1290071112

    Article  Google Scholar 

  28. V. L. Stolyarova, S. I. Shornikov, G. G. Ivanov, and M. M. Shultz, in Procedings of the 4th International Conference on Molten Slags and Fluxes, Sendai, Japan, 1992, p. 185.

  29. V. A. Vorozhtcov, A. L. Shilov, and V. L. Stolyarova, Russ. J. Gen. Chem. 89, 475 (2019). https://doi.org/10.1134/S1070363219030186

    Article  CAS  Google Scholar 

  30. E. N. Kablov, V. L. Stolyarova, V. A. Vorozhtcov, et al., Rapid Commun. Mass Spectrom. 32, 686 (2018). https://doi.org/10.1002/rcm.8081

    Article  CAS  PubMed  Google Scholar 

  31. E. N. Kablov, O. N. Doronin, N. I. Artemenko, et al., Russ. J. Inorg. Chem. 65, 914 (2020). https://doi.org/10.1134/S0036023620060078

    Article  CAS  Google Scholar 

  32. A. L. Shilov, V. L. Stolyarova, V. A. Vorozhtsov, et al., Russ. J. Inorg. Chem. 65, 773 (2020). https://doi.org/10.1134/S0036023620050216

    Article  CAS  Google Scholar 

  33. P. Chartrand and A. D. Pelton, J. Phase Equil. 21, 141 (2000). https://doi.org/10.1361/105497100770340192

    Article  CAS  Google Scholar 

  34. V. L. Stolyarova, V. A. Vorozhtcov, A. L. Shilov, et al., Mater. Chem. Phys. 252, 123240 (2020). https://doi.org/10.1016/j.matchemphys.2020.123240

    Article  CAS  Google Scholar 

  35. E. N. Kablov, V. L. Stolyarova, V. A. Vorozhtcov, et al., J. Alloys Compd. 794, 606 (2019). https://doi.org/10.1016/j.jallcom.2019.04.208

    Article  CAS  Google Scholar 

  36. A. N. Belov and G. A. Semenov, Zh. Fiz. Khim. 59, 589 (1985).

    CAS  Google Scholar 

  37. M. Zinkevich, Prog. Mater. Sci. 52, 597 (2007). https://doi.org/10.1016/J.PMATSCI.2006.09.002

    Article  CAS  Google Scholar 

  38. V. L. Stolyarova and G. A. Semenov, Mass Spectrometric Study of the Vaporization of Oxide Systems (John Wiley, Chichester, 1994).

    Google Scholar 

  39. V. L. Stolyarova and V. A. Vorozhtcov, Russ. J. Phys. Chem. A 94, 2640 (2020). https://doi.org/10.1134/S0036024420130257

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-33-90175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vorozhtcov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyarova, V.L., Vorozhtcov, V.A. The Potential of the Wilson Method in the Calculation of the Thermodynamic Properties of Oxide Systems at High Temperatures. Russ. J. Inorg. Chem. 66, 1396–1404 (2021). https://doi.org/10.1134/S0036023621090163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621090163

Keywords:

Navigation