Skip to main content
Log in

Synthesis and Chemoresistive Gas-Sensing Properties of Highly Dispersed Titanium-Doped Nb2O5

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nb2O5–TiO2 nanomaterials containing 0.5 and 10 mol % TiO2 have been synthesized by the programmed deposition method. The products have been characterized by modern physicochemical methods The Nb2O5–TiO2 nanomaterials have a crystal structure of orthorhombic Nb2O5 (T-phase). Individual niobium oxide is composed of nanoparticles with an average size of 15 ± 3 nm; increasing the TiO2 content entails microstructural changes. For the Nb2O5–TiO2 coatings, a set of chemoresistive gas-sensing properties has been studied. Of all the analyzed gases, the highest sensitivity was recorded for oxygen and hydrogen sulfide. It has been shown that the sample with 5% TiO2 is most sensitive to О2 and H2S, which is explained by the formation of additional oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Liu, Q. Sun, J. Wang, et al., J. Phys. Chem. Solids 124, 163 (2019). https://doi.org/10.1016/j.jpcs.2018.09.017

    Article  CAS  Google Scholar 

  2. V. Ambardekar, P. P. Bandyopadhyay, and S. B. Majumder, Sens. Actuators, B 290, 414 (2019). https://doi.org/10.1016/j.snb.2019.04.003

    Article  CAS  Google Scholar 

  3. T. M. Ngoc, N. Van Duy, C. M. Hung, et al., Anal. Chim. Acta 1069, 108 (2019). https://doi.org/10.1016/j.aca.2019.04.020

    Article  CAS  PubMed  Google Scholar 

  4. H. P. Dang, Q. H. Luc, T. T. Nguyen, et al., J. Alloys Compd. 776, 276 (2019). https://doi.org/10.1016/j.jallcom.2018.10.272

    Article  CAS  Google Scholar 

  5. R. A. Nachiar and S. Muthukumaran, Opt. Laser Technol. 112, 458 (2019). https://doi.org/10.1016/j.optlastec.2018.11.055

    Article  CAS  Google Scholar 

  6. M. Yang, Y. Gong, G. Shen, et al., Mater. Lett. 283, 128733 (2021). https://doi.org/10.1016/j.matlet.2020.128733

    Article  CAS  Google Scholar 

  7. Yan Wang, Xiao-ning Meng, and Jian-liang Cao, Mater. Hazardous, 281, 120944 (2020). https://doi.org/10.1016/j.jhazmat.2019.120944

    Article  CAS  Google Scholar 

  8. V. Kumari, S. Yadav, A. Mittal, et al., J. Mater. Sci.: Mater. Electron. 31, 5227 (2020). https://doi.org/10.1007/s10854-020-03083-6

    Article  CAS  Google Scholar 

  9. S. Stefa, M. Lykaki, V. Binas, et al., Appl. Sci. 10, 7605 (2020). https://doi.org/10.3390/app10217605

    Article  CAS  Google Scholar 

  10. T. N. T. T. Oliveira, C. A. Zito, T. M. Perfecto, et al., New J. Chem. 44, 15574 (2020). https://doi.org/10.1039/d0nj03206a

    Article  CAS  Google Scholar 

  11. S. Y. Jeong, J. S. Kim, and J. H. Lee, Adv. Mater. 32, 2002075 (2020). https://doi.org/10.1002/adma.202002075

    Article  CAS  Google Scholar 

  12. P. Li, Z. Xiong, S. Zhu, et al., Int. J. Hydrogen Energy 42, 30186 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.015

    Article  CAS  Google Scholar 

  13. Z. Dai, H. Dai, Y. Zhou, et al., Adv. Mater. Interfaces 2, 1500167 (2015). https://doi.org/10.1002/admi.201500167

    Article  CAS  Google Scholar 

  14. S. Park, S. Park, S. Kim, et al., J. Korean Phys. Soc. 65, 1414 (2014). https://doi.org/10.3938/jkps.65.1414

    Article  CAS  Google Scholar 

  15. R. A. Kadir, R. A. Rani, A. S. Zoolfakar, et al., Sens. Actuators, B 202, 74 (2014). https://doi.org/10.1016/j.snb.2014.04.083

    Article  CAS  Google Scholar 

  16. S. Park, S. Kim, S. Park, et al., Nano 9, 1450098 (2014). https://doi.org/10.1142/S1793292014500982

    Article  CAS  Google Scholar 

  17. R. A. Rani, A. S. Zoolfakar, J. Z. Oua, et al., Sens. Actuators, B 176, 149 (2013). https://doi.org/10.1016/j.snb.2012.09.028

    Article  CAS  Google Scholar 

  18. R. A. Rani, A. S. Zoolfakar, A. P. O’Mullane, et al., J. Mater. Chem. A 2, 15683 (2014). https://doi.org/10.1039/c4ta02561j

    Article  CAS  Google Scholar 

  19. H. T. Kreissl, M. M. J. Li, Y. K. Peng, et al., J. Am. Chem. Soc. 139, 12670 (2017). https://doi.org/10.1021/jacs.7b06856

    Article  CAS  PubMed  Google Scholar 

  20. K. Naito and T. Matsu, Solid State Ionics 12, 125 (1984). https://doi.org/10.1016/0167-2738(84)90139-5

    Article  Google Scholar 

  21. T. Kikuchi and M. Goto, J. Solid State Chem. 16, 363 (1976). https://doi.org/10.1016/0022-4596(76)90052-9

    Article  CAS  Google Scholar 

  22. R. Brayner and F. Bozon-Verduraz, Phys. Chem. Chem. Phys. 5, 1457 (2003). https://doi.org/10.1039/b210055j

    Article  CAS  Google Scholar 

  23. Z. Wang, Y. Hu, W. Wang, et al., Int. J. Hydrogen Energy 37, 4526 (2011). https://doi.org/10.1016/j.ijhydene.2011.12.004

    Article  CAS  Google Scholar 

  24. L. Chambon, C. Maleysson, A. Pauly, et al., Sens. Actuators, B 45, 107 (1997). https://doi.org/10.1016/S0925-4005(97)00281-5

    Article  CAS  Google Scholar 

  25. L. Chambon, A. Pauly, J. P. Germain, et al., Sens. Actuators, B 43, 60 (1997). https://doi.org/10.1016/S0925-4005(97)00136-6

    Article  CAS  Google Scholar 

  26. A. Kohli, C. C. Wang, and S. A. Akbar, Sens. Actuators, B 56, 121 (1999). https://doi.org/10.1016/S0925-4005(99)00191-4

    Article  CAS  Google Scholar 

  27. J. W. Fergus, J. Mater. Sci. 38, 4259 (2003). https://doi.org/10.1023/A:1026318712367

    Article  CAS  Google Scholar 

  28. V. Demarne, S. Balkanova, A. Grisel, et al., Sens. Actuators, B 14, 497 (1993). https://doi.org/10.1016/0925-4005(93)85063-G

  29. D. Degler, U. Weimar, and N. Barsan, ACS Sensors 4, 2228 (2019). https://doi.org/10.1021/acssensors.9b00975

    Article  CAS  PubMed  Google Scholar 

  30. H. Ji, W. Zeng, and Y. Li, Nanoscale 11, 22664 (2019). https://doi.org/10.1039/c9nr07699a

    Article  CAS  PubMed  Google Scholar 

  31. S. Thomas, N. Joshi, and V. K. Tomer, Functional Nanomaterials: Advances in Gas Sensing Technologies (2020). https://0-link-springer-com.pugwash.lib.warwick.ac.uk/book/10.1007%2F978-981-15-4810-9.

  32. Y. Deng, Semiconducting Metal Oxides for Gas Sensing (Elsevier, 2019). https://doi.org/10.1007/978-981-13-5853-1

  33. H. J. Kim, J. H. Lee, K. Hyo-Joong, et al., Sens. Actuators, B 192, 607 (2014). https://doi.org/10.1016/j.snb.2013.11.005

    Article  CAS  Google Scholar 

  34. A. S. Mokrushin, N. A. Fisenko, P. Y. Gorobtsov, et al., Talanta 221, 121455 (2021). https://doi.org/10.1016/j.talanta.2020.121455

    Article  CAS  PubMed  Google Scholar 

  35. V. G. Sevastyanov, E. P. Simonenko, N. P. Simonenko, et al., Mendeleev Commun. 28, 164 (2018). https://doi.org/10.1016/j.mencom.2018.03.018

    Article  CAS  Google Scholar 

  36. A. S. Mokrushin, E. P. Simonenko, N. P. Simonenko, et al., Appl. Surf. Sci. 463, 197 (2019). https://doi.org/10.1016/j.apsusc.2018.08.208

    Article  CAS  Google Scholar 

  37. A. S. Mokrushin, V. S. Popov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 62, 695 (2017). https://doi.org/10.1134/s0036023617060213

    Article  CAS  Google Scholar 

  38. E. P. Simonenko, N. P. Simonenko, G. P. Kopitsa, et al., Mater. Chem. Phys. 225, 347 (2019). https://doi.org/10.1016/j.matchemphys.2018.12.102

    Article  CAS  Google Scholar 

  39. E. P. Simonenko, A. S. Mokrushin, N. P. Simonenko, et al., Thin Solid Films 670, 46 (2019). https://doi.org/10.1016/j.tsf.2018.12.004

    Article  CAS  Google Scholar 

  40. A. S. Mokrushin, E. P. Simonenko, N. P. Simonenko, et al., J. Alloys Compd. 773, 1023 (2019). https://doi.org/10.1016/j.jallcom.2018.09.274

    Article  CAS  Google Scholar 

  41. T. L. Simonenko, N. P. Simonenko, A. S. Mokrushin, et al., Ceramics Int. 46, 121 (2020). https://doi.org/10.1016/j.ceramint.2019.08.241

    Article  CAS  Google Scholar 

  42. J. Zhu, C. Ren, G. Chen, et al., Sens. Actuators, B 32, 209 (1996). https://doi.org/10.1016/S0925-4005(97)80031-7

    Article  CAS  Google Scholar 

  43. P. Jun and L. Duren, Sens. Actuators, B 66, 210 (2000). https://doi.org/10.1016/S0925-4005(00)00386-5

    Article  CAS  Google Scholar 

  44. H. G. Moon, H. W. Jang, J. S. Kim, et al., Sens. Actuators, B 153, 37 (2011). https://doi.org/10.1016/j.snb.2010.10.003

  45. G. Li, X. Zhang, H. Lu, et al., Sens. Actuators, B 283, 602 (2019). https://doi.org/10.1016/j.snb.2018.12.074

    Article  CAS  Google Scholar 

  46. A. S. Mokrushin, T. L. Simonenko, N. P. Simonenko, et al., J. Alloys Compd. 868, 159090 (2021). https://doi.org/10.1016/j.jallcom.2021.159090

    Article  CAS  Google Scholar 

  47. I. A. Nagornov, A. S. Mokrushin, E. P. Simonenko, et al., Ceramics Int. 46, 7756 (2020). https://doi.org/10.1016/j.ceramint.2019.11.279

    Article  CAS  Google Scholar 

  48. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nature Methods 9, 671 (2012). https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, et al., J. Alloys Compd. 832, 154957 (2020). https://doi.org/10.1016/j.jallcom.2020.154957

    Article  CAS  Google Scholar 

  50. R. R. Pereira, F. T. Aquino, A. Ferrier, et al., J. Lumin. 170, 707 (2016). https://doi.org/10.1016/j.jlumin.2015.08.068

    Article  CAS  Google Scholar 

  51. H. Schäfer, R. Gruehn, and F. Schulte, Angew. Chem., Int. Ed. Engl. 5, 40 (1966). https://doi.org/10.1002/anie.196600401

    Article  Google Scholar 

  52. K. Kato and S. Tamura, Acta Crystallogr., Sect. B 31, 673 (1975).

    Article  Google Scholar 

  53. A. Roy and A. K. Sood, Pramana: J. Phys. 44, 201 (1995). https://doi.org/10.1007/BF02848471

    Article  CAS  Google Scholar 

  54. A. Gibaud, M. Topić, G. Corbel, et al., J. Alloys. Compd. 484, 168 (2009). https://doi.org/10.1016/j.jallcom.2009.05.050

    Article  CAS  Google Scholar 

  55. M. P. F. Graça, A. Meireles, C. Nico, et al., J. Alloys Compd. 553, 177 (2013). https://doi.org/10.1016/j.jallcom.2012.11.128

    Article  CAS  Google Scholar 

  56. R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, J. Mater. Sci. 38, 4271 (2003). https://doi.org/10.1023/A:1026370729205

    Article  CAS  Google Scholar 

  57. L. Andre, D. N. F. Muche, S. Dey, et al., Ceram. Int. 42, 5113 (2015). https://doi.org/10.1016/j.ceramint.2015.12.029

    Article  CAS  Google Scholar 

  58. X. Zhai, J. Liu, Y. Zhao, et al., Appl. Surf. Sci. 499, 143905 (2020). https://doi.org/10.1016/j.apsusc.2019.143905

    Article  CAS  Google Scholar 

  59. X. Wang, T. Liu, C. Wang, et al., Adv. Appl. Ceramics 116, 477 (2017). https://doi.org/10.1080/17436753.2017.1358503

    Article  CAS  Google Scholar 

  60. M. Ohtaki, J. Peng, K. Eguchi, et al., Sens. Actuators, B 14, 495 (1993). https://doi.org/10.1016/0925-4005(93)85062-F

    Article  CAS  Google Scholar 

  61. R. A. Rafael, F. B. Noronha, and A. B. Gaspar, Top. Catal. 63, 1066 (2020). https://doi.org/10.1007/s11244-020-01313-z

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The SEM and XRD measurements were carried out using the equipment of the Shared Facility Center for Physical Methods of Investigation at the IGIC RAS, supported by the state assignment of the IGIC RAS in the field of basic research.

Funding

The study was supported through a grant from the President of the Russian Federation (MK-1023.2020.3, study of the chemoresistive properties of nanocrystalline composites based on Nb2O5) and within the framework of the state assignment of the Institute of General and Inorganic Chemistry, RAS, in the field of basic research (development of methods for the synthesis of semiconductor receptor oxide nanomaterials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mokrushin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrushin, A.S., Simonenko, N.P., Simonenko, T.L. et al. Synthesis and Chemoresistive Gas-Sensing Properties of Highly Dispersed Titanium-Doped Nb2O5. Russ. J. Inorg. Chem. 66, 1425–1433 (2021). https://doi.org/10.1134/S0036023621090060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621090060

Keywords:

Navigation