Skip to main content
Log in

Investigation of the Phase Behavior of Gallium Nanoparticles by an Optical Method

  • PHYSICAL METHODS OF INVESTIGATION
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The melting points and crystallization temperatures of gallium nanoparticles in an aqueous dispersion were determined by an optical method tested previously on n-alkanes. The aqueous dispersion of gallium was prepared by ultrasonic dispersion of a surfactant-free water–gallium mixture heated above the melting point of gallium. The size of particles in the dispersion was found by dynamic light scattering. Destabilization of the dispersions heated above the melting point of gallium was experimentally detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. Ghigna, G. Spinolo, G. B. Parravicini, et al., J. Am. Chem. Soc. 129, 8026 (2007). https://doi.org/10.1021/ja0706100

    Article  CAS  PubMed  Google Scholar 

  2. A. Rühm, H. Reichert, W. Donner, et al., Phys. Rev. 68, 224110 (2003). https://doi.org/10.1103/PhysRevB.68.224110

    Article  CAS  Google Scholar 

  3. V. A. Isaev, A. G. Avanesov, and V. N. Serezhkin, Russ. J. Inorg. Chem. 53, 1135 (2008).

    Article  Google Scholar 

  4. F. M. Mamedov, D. M. Babanly, I. R. Amiraslanov, et al., Russ. J. Inorg. Chem. 65, 1747 (2020). https://doi.org/10.1134/S0036023620110121

    Article  Google Scholar 

  5. M. Losurdo, A. Suvorova, S. Rubanov, et al., Nat. Mater. 15, 995 (2016). https://doi.org/10.1038/nmat4705

    Article  CAS  PubMed  Google Scholar 

  6. R. Kofman, P. Cheyssac, and R. Garrigos, J. Phys. F: Met. Phys. 9, 2345 (1979). https://doi.org/10.1088/0305-4608/9/12/007

    Article  CAS  Google Scholar 

  7. S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, et al., Nano Lett. 12, 4324 (2012). https://doi.org/10.1021/nl302053g

    Article  CAS  PubMed  Google Scholar 

  8. H. C. Dudley, G. W. Imirie, and J. T. Istock, Radiology 55, 571 (1950). https://doi.org/10.1148/55.4.571

    Article  CAS  PubMed  Google Scholar 

  9. B. Nelson, R. L. Hayes, C. L. Edwards, et al., J. Nucl. Med. 13, 92 (1972).

    CAS  PubMed  Google Scholar 

  10. B. N. Ganguly, V. Verma, D. Chatterjee, et al., ACS Appl. Mater. Interfaces 8, 17127 (2016).

    Article  CAS  Google Scholar 

  11. G. B. Parravicini, A. Stella, P. Ghigna, et al., Appl. Phys. Lett. 89, 033123 (2006). https://doi.org/10.1063/1.2221395

    Article  CAS  Google Scholar 

  12. M. Yarema, M. Wörle, M. D. Rossell, et al., J. Am. Chem. Soc. 136, 12422 (2014). https://doi.org/10.1021/ja506712d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. W. Knight, T. Coenen, Y. Yang, et al., ACS Nano 9, 2049 (2015). https://doi.org/10.1021/nn5072254

    Article  CAS  PubMed  Google Scholar 

  14. F. Nucciarelli, I. Bravo, S. Catalan-Gomez, et al., Nanomaterials 7, 172 (2017). https://doi.org/10.3390/nano7070172

    Article  CAS  PubMed Central  Google Scholar 

  15. J. N. Hohman, M. Kim, G. A. Wadsworth, et al., Nano Lett. 11, 5104 (2011). https://doi.org/10.1021/nl202728j

    Article  CAS  PubMed  Google Scholar 

  16. S. Sudo, K. Kokado, and K. Sada, RSC Adv. 7, 678 (2017). https://doi.org/10.1039/C6RA26085C

  17. V. A. Fedotov, K. F. MacDonald, and N. I. Zheludev, J. Appl. Phys. 93, 3540 (2003). https://doi.org/10.1063/1.1555677

    Article  CAS  Google Scholar 

  18. V. A. Fedotov and S. Pochon, et al., Appl. Phys. Lett. 80, 1643 (2002). https://doi.org/10.1063/1.1456260

    Article  CAS  Google Scholar 

  19. V. N. Kuryakov, D. D. Ivanova, A. P. Semenov, et al., Energy Fuels 34, 5168 (2020). https://doi.org/10.1021/acs.energyfuels.9b03566

    Article  CAS  Google Scholar 

  20. V. N. Kuryakov, D. D. Ivanova, and K. I. Kienskaya, Russ. Chem. Bull. 69, 1306 (2020). https://doi.org/10.1007/s11172-020-2902-8

    Article  CAS  Google Scholar 

  21. V. Kuryakov, Y. Zaripova, M. Varfolomeev, et al., J. Therm. Anal. Calorim. 142, 2035 (2020). https://doi.org/10.1007/s10973-020-10001-9

    Article  CAS  Google Scholar 

  22. V. N. Kuryakov, D. D. Ivanova, A. N. Tkachenko, et al., IOP Conf. Ser.: Mater. Sci. Eng. 848, 012044 (2020). https://doi.org/10.1088/1757-899X/848/1/012044

  23. V. N. Kuryakov and D. D. Ivanova, Int. J. Nanosci. 18, 1940032 (2019). https://doi.org/10.1142/S0219581X19400325

    Article  CAS  Google Scholar 

  24. V. N. Kuryakov and D. D. Ivanova, J. Phys. Conf. Ser. 1385, 12045 (2019). https://doi.org/10.1088/1742-6596/1385/1/012045

    Article  CAS  Google Scholar 

  25. V. N. Kuryakov, LucentiniP. G. De Sanctis, and D. D. Ivanova, IOP Conf. Ser.: Mater. Sci. Eng. 347, 012034 (2018). https://doi.org/10.1088/1757-899X/347/1/012034

  26. V. N. Kuryakov and V. A. Dechabo, J. Phys. Conf. Ser. 1683, 032038 (2020). https://doi.org/10.1088/1742-6596/1683/3/032038

    Article  CAS  Google Scholar 

  27. D. D. Ivanova, M. V. Gorbachevskii, A. A. Novikov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 921, 012010 (2020). https://doi.org/10.1088/1757-899X/921/1/012010

  28. H. Z. Cummins and E. R. Pike, Photon Correlation and Light Beating Spectroscopy (Springer US, Boston, 1974).

    Book  Google Scholar 

Download references

Funding

This work was supported under state assignment no. AAAA-А19-119030690057-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kuryakov.

Ethics declarations

CONFLICT OF INTEREST

The author declares that he has no conflicts of interest.

ADDITIONAL INFORMATION

This paper was published further to the Sixth Interdisciplinary Scientific Forum with the International Participation “Novel Materials and Promising Technology,” Moscow, November 23–26, 2020. https://n-materials.ru.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuryakov, V.N. Investigation of the Phase Behavior of Gallium Nanoparticles by an Optical Method. Russ. J. Inorg. Chem. 66, 1148–1152 (2021). https://doi.org/10.1134/S003602362108012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362108012X

Keywords:

Navigation