Skip to main content
Log in

Thiamethoxam Insecticide Degradation with a Leaf-Like Cupric Oxide Monoclinic Structure Synthesized via the Microwave Method

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Leaf-like cupric oxide (CuO) with a high purity phase monoclinic structure was synthesized via a microwave method for use as a photocatalyst in the degradation of thiamethoxam insecticide. The synthesis process used copper nitrate and ammonia solution as precursors. The suspensions were treated via microwave irradiation at 600–800 W for 30 min, followed by a constant-temperature calcination process. The phase transitions, thermal stabilities, morphologies, chemical compositions, functional groups, and optical properties of the resulting leaf-like CuO powders were characterized via X-ray powder diffraction, TGA/DSC, SEM, particle size distribution analysis, EDS, FT-IR, UV-DRS, and PL. The experimental findings showed that increasing the microwave power resulted in favorable chemical and physical properties for the powders’ photocatalytic reactions, such as high purity phases, high crystallinity, high uniformity of the leaf-like shapes, smaller particle sizes, narrower size distributions, lower energy bandgaps, and lower rates of electron-hole pair recombination. The photocatalytic degradation of thiamethoxam insecticide using these leaf-like CuO powders under visible light illumination was studied. The concentration of thiamethoxam was analyzed using UV-Vis spectrophotometry. The highest thiamethoxam degradation efficiency was achieved by the CuO powder synthesized via microwave irradiation at 800 watts. Its efficiency was 48.65% in 60 min at a kinetic rate constant of 10.9 × 10−3 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. P. Zhang, M. He, Y. Wei, et al., Crop. Prot. 90, 1 (2016). https://doi.org/10.1016/j.cropro.2016.07.028

    Article  CAS  Google Scholar 

  2. D. Šojić, V. Despotović, D. Orčić, et al., J. Hydrol. 472473, 314 (2012). https://doi.org/10.1016/j.jhydrol.2012.09.038

    Article  CAS  Google Scholar 

  3. S. Kurwadkar, A. Evans, D. Dewine, et al., Environ. Toxicol. Chem. 35 (7), 1718 (2016). https://doi.org/10.1002/etc.3335

    Article  CAS  PubMed  Google Scholar 

  4. M. J. Hilton, S. N. Emburey, P. A. Edwards, et al., Pest. Manag. Sci. 75 (1), 63 (2019). https://doi.org/10.1002/ps.5168

    Article  CAS  PubMed  Google Scholar 

  5. M. Díaz-López, C. García, I. Garrido, et al., Geoderma 354, 113893 (2019). https://doi.org/10.1016/j.geoderma.2019.113893

    Article  CAS  Google Scholar 

  6. N. A. Mir, A. Khan, M. Muneer, et al., Sci. Total Environ. 458460, 388 (2013). https://doi.org/10.1016/j.scitotenv.2013.04.041

    Article  CAS  PubMed  Google Scholar 

  7. T. Lastovina, A. Budnyk, G. Khaishbashev, et al., J. Serb. Chem. Soc. 81 (7), 751 (2016). https://doi.org/10.2298/JSC151211036L

    Article  CAS  Google Scholar 

  8. S. Dolai, R. Dey, S. Das, et al., J. Alloys Compd. 724, 456 (2017). https://doi.org/10.1016/j.jallcom.2017.07.061

    Article  CAS  Google Scholar 

  9. J. Tan, M. Dun, L. Li, et al., Sens. Actuators, B 252, 1 (2017). https://doi.org/10.1016/j.snb.2017.05.107

    Article  CAS  Google Scholar 

  10. X. Liu, Y. Yang, R. Liu, et al., J. Alloys Compd. 718, 304 (2017). https://doi.org/10.1016/j.jallcom.2017.05.201

    Article  CAS  Google Scholar 

  11. A. Ulyankina, I. Leontyev, O. Maslova, et al., Mater. Sci. Semicon. Proc. 73, 111 (2018). https://doi.org/10.1016/j.mssp.2017.08.001

    Article  CAS  Google Scholar 

  12. J. Huo, X. Liu, X. Li, et al., Int. J. Hydrogen Energ. 42, 15540 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.033

    Article  CAS  Google Scholar 

  13. K. Kumar, A. Priya, A. Arun, et al., Mater. Chem. Phys. 226, 106 (2019). https://doi.org/10.1016/j.matchemphys.2019.01.020

    Article  CAS  Google Scholar 

  14. C. Karunakaran, G. Manikandan, and P. Gomathisankar, J. Alloys Compd. 580, 570 (2013). https://doi.org/10.1016/j.jallcom.2013.07.150

    Article  CAS  Google Scholar 

  15. A. Mirzaei and G. Neri, Sens. Actuators, B 237, 749 (2016). https://doi.org/10.1016/j.snb.2016.06.114

    Article  CAS  Google Scholar 

  16. Y. Min, T. Wang, and Y. Chen, Appl. Surf. Sci. 257, 132 (2010). https://doi.org/10.1016/j.apsusc.2010.06.049

    Article  CAS  Google Scholar 

  17. S. L. Wang, P. G. Li, H. W. Zhu, et al., Powder Technol. 230, 48 (2012). https://doi.org/10.1016/j.powtec.2012.06.051

    Article  CAS  Google Scholar 

  18. X. Zhou, J. Zhang, Q. Su, et al., Electrochim. Acta 125, 615 (2014). https://doi.org/10.1016/j.electacta.2014.01.155

    Article  CAS  Google Scholar 

  19. J. Sultana, S. Paul, A. Karmakar, et al., Appl. Surf. Sci. 418, 380 (2017). https://doi.org/10.1016/j.apsusc.2016.12.139

    Article  CAS  Google Scholar 

  20. K. Kumar and A. Chowdhury, Ceram. Int. 43, 13943 (2017). https://doi.org/10.1016/j.ceramint.2017.07.125

    Article  CAS  Google Scholar 

  21. H. Shi, Y. Zhao, N. Li, et al., Catal. Commun. 47, 7 (2014). https://doi.org/10.1016/j.catcom.2013.12.032

    Article  CAS  Google Scholar 

  22. H. Wang, Q. Shen, X. Li, et al., Langmuir 25, 3152 (2009). https://doi.org/10.1021/la803276z

    Article  CAS  PubMed  Google Scholar 

  23. X. Zhou, J. Shi, Y. Liu, et al., J. Alloys Compd. 615, 390 (2014). https://doi.org/10.1016/j.jallcom.2014.07.013

    Article  CAS  Google Scholar 

  24. T. S. Cam, A. E. Petrova, V. L. Ugolkov, et al., Russ. J. Inorg. Chem. 65, 725 (2020). https://doi.org/10.1134/S0036023620050046

    Article  CAS  Google Scholar 

  25. L. Yang, D. Chu, and L. Wang, Powder Technol. 287, 346 (2016). https://doi.org/10.1016/j.powtec.2015.10.011

    Article  CAS  Google Scholar 

  26. W. M. Rangel, R. A. A. B. Santa, and H. G. Riella, J. Mater. Res. Technol. 9 (1), 994 (2020). https://doi.org/10.1016/j.jmrt.2019.11.039

    Article  CAS  Google Scholar 

  27. M. Verma, V. Kumar, and A. Katoch, Mater. Sci. Semicon. Proc. 76, 55 (2018). https://doi.org/10.1016/j.mssp.2017.12.018

    Article  CAS  Google Scholar 

  28. B. Saravanakumar, C. Radhakrishnan, M. Ramasamy, et al., Results Phys. 13, 102185 (2019). https://doi.org/10.1016/j.rinp.2019.102185

    Article  Google Scholar 

  29. S. Dagher, Y. Haik, A. I. Ayesh, et al., J. Lumin. 151, 149 (2014). https://doi.org/10.1016/j.jlumin.2014.02.015

    Article  CAS  Google Scholar 

  30. J. Xia, H. Li, Z. Luo, et al., J. Phys. Chem. Solids 70, 1461 (2009). https://doi.org/10.1016/j.jpcs.2009.08.006

    Article  CAS  Google Scholar 

  31. S. Sundar, G. Venkatachalam, and S. J. Kwon, Nanomaterials (Basel) 8, 823 (2018). https://doi.org/10.3390/nano8100823

    Article  CAS  Google Scholar 

  32. A. V. Uschakov, I. V. Karpov, A. A. Lepeshev, et al., Vacuum 128, 123 (2016). https://doi.org/10.1016/j.vacuum.2016.03.025

    Article  CAS  Google Scholar 

  33. R. Sathyamoorthy and K. Mageshwari, Physica E. 47, 157 (2013). https://doi.org/10.1016/j.physe.2012.10.019

    Article  CAS  Google Scholar 

  34. K. Mageshwari, R. Sathyamoorthy, and J. Park, Powder. Technol. 278, 150 (2015). https://doi.org/10.1016/j.powtec.2015.03.004

    Article  CAS  Google Scholar 

  35. M. Rabbani, R. Rahimi, M. Bozorgpour, et al., Mater. Lett. 119, 39 (2014). https://doi.org/10.1016/j.matlet.2013.12.095

    Article  CAS  Google Scholar 

  36. S. Sonia, S. Poongodi, P. S. Kumar, et al., Mat. Sci. Semicon. Proc. 30, 585 (2015). https://doi.org/10.1016/j.mssp.2014.10.012

    Article  CAS  Google Scholar 

  37. C. Yang, X. Su, J. Wang, et al., Sens. Actuators, B 185, 159 (2013). https://doi.org/10.1016/j.snb.2013.04.100

    Article  CAS  Google Scholar 

  38. C. Saovakon and P. Jansanthea, J. Aust. Ceram. Soc. Early Access (2020). https://doi.org/10.1007/s41779-020-00488-8

  39. A. Mahmood, F. Tezcan, and G. Kardas, Int. J. Hydrogen. Energ. 42, 23268 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.003

    Article  CAS  Google Scholar 

  40. P. Chand, Manisha, and P. Kumar, Optik 156, 743 (2018). https://doi.org/10.1016/j.ijleo.2017.12.029

    Article  CAS  Google Scholar 

  41. C. Zhang, Y. Li, J. Li, et al., Chem. Eng. J. 392, 123687 (2020). https://doi.org/10.1016/j.cej.2019.123687

    Article  CAS  Google Scholar 

  42. R. Žabar, T. Komel, J. Fabjan, et al., Chemosphere 89, 293 (2013). https://doi.org/10.1016/j.chemosphere.2012.04.039

    Article  CAS  Google Scholar 

  43. A. Sadollahkhani, Z. H. Ibupoto, S. Elhag, et al., Ceram. Int. 40, 11311 (2014). https://doi.org/10.1016/j.ceramint.2014.03.132

    Article  CAS  Google Scholar 

  44. S. Mosleh, M. R. Rahimi, M. Ghaedi, et al., Ultrason. Sonochem. 40, 601 (2018). https://doi.org/10.1016/j.ultsonch.2017.08.007

    Article  CAS  PubMed  Google Scholar 

  45. H. Yang, H. Liu, Z. Hub, et al., Chem. Eng. J. 245, 24 (2014). https://doi.org/10.1016/j.cej.2014.02.016

    Article  CAS  Google Scholar 

  46. M. F. N. Taufique, A. Haque, P. Karnati, et al., J. Electron. Mater. 47 (11), 6731 (2018). https://doi.org/10.1007/s11664-018-6582-1

    Article  CAS  Google Scholar 

  47. S. H. Kim, A. Umar, R. Kumar, et al., Mater. Lett. 156, 138 (2015). https://doi.org/10.1016/j.matlet.2015.05.014

    Article  CAS  Google Scholar 

  48. G. Chen, H. Zhou, W. Ma, et al., Solid State Sci. 13, 2137 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.08.013

    Article  CAS  Google Scholar 

  49. L. Guo, F. Tong, H. Liu, et al., Mater. Lett. 71, 32 (2012). https://doi.org/10.1016/j.matlet.2011.11.105

    Article  CAS  Google Scholar 

  50. K. Yao, S. Liu, Y.-Y. Dong, et al., Mater. Des. 90, 129 (2016). https://doi.org/10.1016/j.matdes.2015.10.121

    Article  CAS  Google Scholar 

  51. L. Yang, D. Chu, and L. Wang, Mater. Lett. 160, 246 (2015). https://doi.org/10.1016/j.matlet.2015.07.133

    Article  CAS  Google Scholar 

  52. F. Wang, A. Kalam, L. Chang, et al., Mater. Lett. 92, 96 (2013). https://doi.org/10.1016/j.matlet.2012.10.058

    Article  CAS  Google Scholar 

  53. M. P. Rao, J. J. Wu, A. M. Asiri, et al., J. Environ. Sci. (China) 69, 115 (2018). https://doi.org/10.1016/j.jes.2017.05.005

    Article  Google Scholar 

  54. K. Sahu, S. Choudhary, S. A. Khan, et al., Nano-Struct. Nano-Objects 17, 92 (2019). https://doi.org/10.1016/j.nanoso.2018.12.005

    Article  CAS  Google Scholar 

  55. L. Arfaoui, F. Janene, S. Kouass, et al., Russ. J. Inorg. Chem. 64, 1687 (2019). https://doi.org/10.1134/S0036023619130060

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Program in Chemistry, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit, Thailand, for the use of its research equipment.

Funding

The authors acknowledged the National Research Council of Thailand (NRCT) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jansanthea.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansanthea, P., Saovakon, C., Chomkitichai, W. et al. Thiamethoxam Insecticide Degradation with a Leaf-Like Cupric Oxide Monoclinic Structure Synthesized via the Microwave Method. Russ. J. Inorg. Chem. 66, 667–678 (2021). https://doi.org/10.1134/S0036023621050089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621050089

Keywords:

Navigation