Skip to main content
Log in

Alkalinity Effect on Characteristic Properties and Morphology of Magnesium Phosphate Hydrates

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—

Magnesium oxide (MgO) and orthophosphoric acid (H3PO4) have been reacted at different pH values to study the effects of alkalinity on the characteristic features of magnesium phosphate material. The phases of the synthesized samples have been identified as newberyite (with the chemical formula of MgHPO4 ⋅ 3H2O and the pdf no. 01-075-1714) and magnesium phosphate hydrate (with the chemical formula of Mg3(PO4)2 · 22H2O and the pdf no. 00-044-0775), in the X-ray powder diffraction analyses results. The characteristic band values of samples have been characterized by FTIR and Raman spectroscopies. The differences in morphologies have been studied with Scanning Electron Microscope (SEM). The largest particles in the range of 3.16–9.85 µm have been seen in the shape of nested flat sheets at pH 10 while the smallest particles between 1.17–2.04 µm have been obtained in the shape of an ellipse at pH 7. According to the thermogravimetric analyses, the differences in thermal behaviours have been determined. MgHPO4 · 3H2O has lost its crystal water by a two-step reaction while Mg3(PO4)2 · 22H2O has dehydrated by a single-step reaction. Obtained results indicate that the crystal structure and surface morphology of the synthesized compound can be modified by the alkalinity of the reaction medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. F. Qiao, C. K. Chau, and Z. Li, Constr. Build. Mater. 24, 695 (2010). https://doi.org/10.1016/j.conbuildmat.2009.10.039

    Article  Google Scholar 

  2. G. Metres and M. P. Ginebra, Acta Biomater. 7, 1853 (2011). https://doi.org/10.1016/j.actbio.2010.12.008

    Article  CAS  Google Scholar 

  3. Z. Mesikova, P. Sulcova, and M. Trojan, J. Therm. Anal. Calorim. 88, 103 (2007). https://doi.org/10.1007/s10973-006-8099-8

    Article  CAS  Google Scholar 

  4. B. Boonchom, J. Therm. Anal. Calorim. 98, 863 (2009). https://doi.org/10.1007/s10973-009-0108-2

    Article  CAS  Google Scholar 

  5. Y. H. Liu, S. Kumar, J. H. Kwag, and C. S. Ra, J. Chem. Technol. Biotechnol. 88, 181 (2013). https://doi.org/10.1002/jctb.3936

    Article  CAS  Google Scholar 

  6. M. A. Aramendia, V. Borau, C. Jimenez, et al., J. Colloid. Interf. Sci. 240, 237 (2001). https://doi.org/10.1006/jcis.2001.7565

    Article  CAS  Google Scholar 

  7. M. A. Aramendia, V. Borau, C. Jimenez, et al., J. Colloid. Interf. Sci. 219, 201 (1999). https://doi.org/10.1006/jcis.1999.6472

    Article  CAS  Google Scholar 

  8. J. A. Kim, H. Yun, Y. Choi, et al., Biomater. 157, 51 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.032

    Article  CAS  Google Scholar 

  9. Y. Li, Y. Li, T. Shi and J. Li, Const. Build. Mater. 96, 346 (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.012

    Article  Google Scholar 

  10. A. Bensalem and G. Iyer, J. Solid. State. Chem. 114, 598 (1995). https://doi.org/10.1006/jssc.1995.1092

    Article  CAS  Google Scholar 

  11. K. Kongshaug, H. Fjellvag, and K. P. Lillerud, Solid. State. Sci. 3, 353 (2001). https://doi.org/10.1016/S1293-2558(00)01109-2

    Article  CAS  Google Scholar 

  12. A. Bensalem, M. Ahluwalia, T. V. Vijayaraghavan, and Y. H. Ko, Mater. Res. Bull. 32, 1473 (1997). https://doi.org/10.1016/S0025-5408(97)00129-3

    Article  CAS  Google Scholar 

  13. S. V. Golubev, O. S. Pokrovsky, and V. S. Savenko, J. Cryst. Growth 223, 550 (2011). https://doi.org/10.1016/S0022-0248(01)00681-9

    Article  Google Scholar 

  14. A. Bensalem, G. Iyer, and S. Amar, Mater. Res. Bull. 30, 1471 (1995). https://doi.org/10.1016/0025-5408(95)00168-9

    Article  CAS  Google Scholar 

  15. M. Sadiq, M. Bensitel, C. Lamonier, and J. Leglise, Solid. State Sci. 10, 434 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.12.037

    Article  CAS  Google Scholar 

  16. G. J. Racz and R. J. Soper, Can. J. SoiI Sci. 48, 265 (1968). https://doi.org/10.4141/cjss68-036

    Article  CAS  Google Scholar 

  17. S. N. Britvin, G. Ferraris, G. Ivaldi, et al., N. Jb. Miner. Mh. 4, 160 (2002). https://doi.org/10.1127/0028-3649/2002/2002-0160

    Article  CAS  Google Scholar 

  18. T. Kanazawa, T. Umegaki, and M. Shimizu, B: Chem. Soc. Jpn. 52, 3713 (1979). https://doi.org/10.1016/S1293-2558(00)01109-2

    Article  CAS  Google Scholar 

  19. H. Assaaoudi, Z. Fang, I. S. Butler, et al., Solid State Sci. 9, 385 (2007). https://doi.org/10.1016/j.solidstatesciences.2007.03.015

    Article  CAS  Google Scholar 

  20. H. Zhou, J. F. Luchini, and J. Bhaduri, J. Mater. Sci.: Mater. Med. 23, 2831 (2012). https://doi.org/10.1007/s10856-012-4743-y

    Article  CAS  Google Scholar 

  21. S. Mousa, Phosphorus Res. Bull. 24, 16 (2010). https://doi.org/10.3363/prb.24.16

    Article  CAS  Google Scholar 

  22. A. S. Wagh and S. Y. Jeong, J. Am. Ceram. Soc. 86, 1838 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03569.x

    Article  CAS  Google Scholar 

  23. J. M. Poplawska, M. Pernechele, T. Troczynski, et al., J. Mol. Struct. 1180, 215 (2019). https://doi.org/10.1016/j.molstruc.2018.11.087

    Article  CAS  Google Scholar 

  24. G. R. Sivakumar, In Vitro Studies on the Growth and Characterization of the Crystalline Constituents of Metabolic Acid and Nonmetabollic Urinary Stones: Dicalcium Phosphate and Magnesium Phosphate (Anna University, India, 2000).

    Google Scholar 

  25. R. L. Frost, W. Martens, P. A. Williams, and J. T. Kloprogge, Mineral. Mag. 66, 1063 (2002). https://doi.org/10.1180/0026461026660077

    Article  CAS  Google Scholar 

  26. R. L. Frost, S. Palmer, and R. E. Pogson, Spectrochim. Acta A 79, 1149 (2011). https://doi.org/10.1016/j.saa.2011.04.035

    Article  CAS  Google Scholar 

  27. F. T. Senberber, Main Group Chem. 16, 151 (2018). https://doi.org/10.3233/MGC-170233

    Article  CAS  Google Scholar 

  28. M. A. Kremennaya, A. P. Budnyk, M. A. Soldatov, et al., J. Struct. Chem. 59, 64 (2018). https://doi.org/10.1134/S0022476618010109

    Article  CAS  Google Scholar 

  29. N. N. Golovneva, M. S. Molokeeva, and I. V. Sterkhovad, Russ. J. Inorg. Chem. 64, 1146 (2019). https://doi.org/10.1134/S0036023619090134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. T. Senberber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senberber, F.T., Moroydor Derun, E. Alkalinity Effect on Characteristic Properties and Morphology of Magnesium Phosphate Hydrates. Russ. J. Inorg. Chem. 65, 1326–1332 (2020). https://doi.org/10.1134/S0036023620090156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620090156

Keywords:

Navigation