Skip to main content
Log in

Theoretical Approaches to the Conformational Preference of 2,2-Di-tert-Butyl-1,3-Dioxane, 2,2-Di-tert-Butyl-1,3-Dithian, and 2,2-Di-tert-Butyl-1,3-Diselenan

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This research aimed at exploring the stabilities of 2,2-di-tert-butyl-1,3-dioxane, 2,2-di-tert-butyl-1,3-dithian, and 2,2-di-tert-butyl-1,3-diselenan conformers at the B3LYP/6-311+G(d,p) theory level. To this goal, estimations of the total energies, dipole moments, Frontier Orbital Energies (FOEs), and HOMO/LUMO gaps of the chair and twist-boat conformations were first done for the mentioned molecules. The partitioning of the total electronic energy E(tot) into Lewis E(L) and non-Lewis E(NL) parts was performed using the concept of natural bond orbital (NBO) analysis. Then, the Natural Coulomb Electrostatic (NCE) potential energies, total energies into Lewis components, and total steric exchange energies were estimated. Finally, the hyperconjugative anomeric effects on the conformers were illustrated by NBO analysis and the interactions responsible for the effects were explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrisoun Conformarionol Analysis (Interscience, New York 1965).

    Google Scholar 

  2. F. G. Riddell and M. J. T. Robinwn, Tetrahedron 23, 3417 (1967). https://doi.org/10.1016/S0040-4039(00)92651-0

    Article  CAS  Google Scholar 

  3. E. J. Corey and D. Seebach, Angew. Chem., Int. Ed. Engl. 4, 1075 (1965). https://doi.org/10.1002/anie.196510752

    Article  CAS  Google Scholar 

  4. E. J. Corey and D. Seebach, Angew. Chem., Int. Ed. Engl. 4, 1077 (1965). https://doi.org/10.1002/anie.196510771

    Article  CAS  Google Scholar 

  5. P. C. B. Page, M. B. v. Niel, and J. C. Prodger, Tetrahedron 45, 7643 (1989). https://doi.org/10.1016/S0040-4020(01)85784-7

    Article  CAS  Google Scholar 

  6. B. T. Grobel and D. Seebach, Synthesis, 6, 357 (1977).https://doi.org/10.1055/s-1977-24412

    Article  Google Scholar 

  7. M. Yus, C. Nájera, and F. Foubelo, Tetrahedron 59, 6147 (2003). https://doi.org/10.1016/S0040-4020(03)00955-4

    Article  CAS  Google Scholar 

  8. G. Cuevas and E. Juaristi, J. Am. Chem. Soc. 124, 13088 (2002). https://doi.org/10.1021/ja020317u

    Article  CAS  PubMed  Google Scholar 

  9. I. V. Alabugin, M. Manoharan, and T. A. Zeidan, J. Am. Chem. Soc. 125, 14014 (2003). https://doi.org/10.1021/ja037304g

    Article  CAS  PubMed  Google Scholar 

  10. I. V. Alabugin, J. Org. Chem. 65, 3910 (2000). https://doi.org/10.1021/jo991622+

    Article  CAS  PubMed  Google Scholar 

  11. G. F. Gauze, E. A. Basso, R. H. Contreras, and C. F. Tormena, J. Phys. Chem. A 113, 2647 (2009). https://doi.org/10.1021/jp810981z

    Article  CAS  PubMed  Google Scholar 

  12. E. Juaristi and R. Notario, J. Org. Chem. 83, 3293 (2018). https://doi.org/10.1021/acs.joc.8b00220

    Article  CAS  PubMed  Google Scholar 

  13. O. Y. Kupova, I. V. Vakulin, and R. F. Talipov, Comput. Theor. Chem. 1013, 57 (2013). https://doi.org/10.1016/j.comptc.2013.02.024

    Article  CAS  Google Scholar 

  14. V. A. Shiryaev and A. K. Shiryaev, Comput. Theor. Chem. 1044, 87 (2014). https://doi.org/10.1016/j.comptc.2014.06.014

    Article  CAS  Google Scholar 

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al.; Revision A.02 ed.; Gaussian, Inc.: Wallingford CT, 2009.

  16. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980). https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  17. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980). .https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  18. L. A. Curtiss, M. P. McGrath, J.-P. Blandeau, et al., J. Chem. Phys. 103, 6104 (1995). https://doi.org/10.1063/1.470438

    Article  CAS  Google Scholar 

  19. A. D. Becke, J. Chem. Phys 98, 5648 (1993). https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  20. K. Fukui, Acc. Chem. Res. 14, 363 (1981). https://doi.org/10.1021/ar00072a001

    Article  CAS  Google Scholar 

  21. K. Fukui, J. Phys. Chem. 74, 4161 (1970). https://doi.org/10.1021/j100717a029

    Article  CAS  Google Scholar 

  22. C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 94, 5523 (1990). https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  23. C. Gonzalez and H. B. Schlegel, J. Chem. Phys. 90, 2154 (1989). https://doi.org/10.1063/1.456010

    Article  CAS  Google Scholar 

  24. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988). https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  25. K. B. Wiberg and M. A. Murcko, J. Am. Chem. Soc. 111, 4821 (1989). https://doi.org/10.1021/ja00195a038

    Article  CAS  Google Scholar 

  26. K. B. Wiberg and M. A. Murcko, J. Phys. Chem. 91, 3616 (1987). https://doi.org/10.1021/j100297a030

    Article  CAS  Google Scholar 

  27. E. Juaristi and G. Cuevas, Tetrahedron 48, 5019 (1992). https://doi.org/10.1016/S0040-4020(01)90118-8

    Article  CAS  Google Scholar 

  28. C. L. Perrin, K. B. Armstrong, and M. A. Fabian, J. Am. Chem. Soc. 116, 715 (1994). https://doi.org/10.1021/ja00081a037

    Article  CAS  Google Scholar 

  29. M. Wunderlich and F. X. Schmid, Protein Engineering, Design & Selection 19, 355 (2006). https://doi.org/10.1093/protein/gzl019

    Article  CAS  Google Scholar 

  30. R. G. Pearson, J. Chem. Educ. 64, 561 (1987). https://doi.org/10.1021/ed064p561

    Article  CAS  Google Scholar 

  31. R. G. Parr and P. K. Chattaraj, J. Am. Chem. Soc. 113, 1854 (1991). https://doi.org/10.1021/ja00005a072

    Article  CAS  Google Scholar 

  32. R. G. Pearson, Acc. Chem. Res. 26, 250 (1993). https://doi.org/10.1021/ar00029a004

    Article  CAS  Google Scholar 

  33. R. G. Pearson, J. Chem. Educ. 76, 267 (1999). https://doi.org/10.1021/ed076p267

    Article  CAS  Google Scholar 

  34. P. W. Ayers and R. G. Parr, J. Am. Chem. Soc. 122, 2010 (2000). https://doi.org/10.1021/ja9924039

    Article  CAS  Google Scholar 

  35. F. Weinhold, Discovering Chemistry with Natural Bond Orbitals (Wiley, Hoboken, New Jersey, 2012).

    Book  Google Scholar 

  36. C. Romers, C. Altona, H. R. Buys, and E. Havinga, Topics Stereochem. 4, 39 (1969). https://doi.org/10.1002/9780470147139.ch2

    Article  CAS  Google Scholar 

  37. S. Wolfe, B. M. Pinto, V. Varma and R. Y. N. Leung, Can. J. Chem. 68, 1051 (1990). https://doi.org/10.1139/v90-164

    Article  CAS  Google Scholar 

  38. S. Wolfe and C.-K. Kim, Can. J. Chem. 69, 1408 (1991). https://doi.org/10.1139/v91-208

    Article  CAS  Google Scholar 

  39. E. Juaristi and G. Cuevas, Tetrahedron Letters 33, 1847 (1992). https://doi.org/10.1016/S0040-4039(00)74158-X

    Article  CAS  Google Scholar 

  40. E. Juaristi, G. Cuevas, and A. Flores-Vela, Tetrahedron Lett. 33, 6927 (1992). https://doi.org/10.1016/S0040-4039(00)60897-3

    Article  CAS  Google Scholar 

  41. E. Juaristi, G. Cuevas, and A. Vela, J. Am. Chem. Soc. 116, 5796 (1994). https://doi.org/10.1021/ja00092a034

    Article  CAS  Google Scholar 

  42. E. Juaristi, G. Cuevas, and A. Vela, J. Mol. Struct. (Theochem) 418, 231 (1997). https://doi.org/10.1016/S0166-1280(96)05016-6

    Article  Google Scholar 

  43. G. Cuevas, E. Juaristi, and A. Vela, J. Phys. Chem. A 103, 932 (1999). https://doi.org/10.1021/jp983664s

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghiasi.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morteza Nasrolahi, Ghiasi, R. & Shafiei, F. Theoretical Approaches to the Conformational Preference of 2,2-Di-tert-Butyl-1,3-Dioxane, 2,2-Di-tert-Butyl-1,3-Dithian, and 2,2-Di-tert-Butyl-1,3-Diselenan. Russ. J. Inorg. Chem. 64, 1556–1564 (2019). https://doi.org/10.1134/S0036023619120118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619120118

Keywords:

Navigation