Skip to main content
Log in

Synthesis, Crystal Structure, and Thermal Expansion of Sodium Barium Zirconium Phosphate–Sulfate

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The phosphate–sulfate synthesis approach preventing the elimination of sulfur in the process of synthesis has been tested for NaBa6Zr(PO4)5SO4 as an example. The phase formation and thermal stability of phosphate–sulfate have been studied by X-ray diffraction and DTA-TG. The NaBa6Zr(PO4)5SO4 structure (space group I\(\overline 4 \)3d, a = 10.5449(3) Å, V = 1172.54(5) Å3, Z = 4) allied to the eulytite mineral has been refined by the Rietveld method. The structure is formed by wavy chains of edge-sharing (Na,Ba,Zr)O6-octahedra and (P,S)O4-tetrahedra sharing apices with the octahedra. Using thermal X-ray diffraction, it has been established that phosphate–sulfate is a strongly expanding material (αа = αb = αc = 13.3 × 10–6°C–1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Ishii, K. Harada, N. Senguttuvan, et al., J. Cryst. Growth 205, 191 (1999). https://doi.org/10.1016/S0022-0248(99)00232-8

    Article  CAS  Google Scholar 

  2. B. Onderka, Thermochim. Acta 601, 68 (2015). https://doi.org/10.1016/j.tca.2014.12.021

    Article  CAS  Google Scholar 

  3. T. I. Milenov, P. M. Rafailov, R. Petrova, et al., Mater. Sci. Eng. 138, 35 (2007). https://doi.org/10.1016/j.mseb.2007.01.001

    Article  CAS  Google Scholar 

  4. P. Yu, L. Su, H. Zhao, and J. Xu, J. Lumin. 154, 520 (2014). https://doi.org/10.1016/j.jlumin.2014.06.005

    Article  CAS  Google Scholar 

  5. El H. Arbib, B. Elouadi, J. P. Chaminade, and J. Darriet, Mater. Res. Bull. 35, 761 (2000). https://doi.org/10.1016/S0025-5408(00)00270-1

    Article  CAS  Google Scholar 

  6. P. P. Sahoo, E. Gaudin, J. Darriet, and Row T. N. Guru, Mater. Res. Bull. 44, 812 (2009). https://doi.org/10.1016/j.materresbull.2008.09.022

    Article  CAS  Google Scholar 

  7. D. J. Segal, R. P. Santoro, and R. E. Newham, Z. Kristallogr. 123, 73 (1966). https://doi.org/10.1524/zkri.1966.123.16.73

    CAS  Google Scholar 

  8. P. Abhilash, M. T. Sebastian, and K. P. Surendran, J. Eur. Ceram. Soc. 36, 1939 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.019

    Article  CAS  Google Scholar 

  9. H. F. Folkerts, J. Zuidema, and G. Blasse, Chem. Phys. Lett. 249, 59 (1996). https://doi.org/10.1016/0009-2614(95)01363-6

    Article  CAS  Google Scholar 

  10. Z. Zhang, P. Shen, Ya. Wu, et al., Opt. Mater. 37, 866 (2014). https://doi.org/10.1016/j.optmat.2014.05.029

    Article  CAS  Google Scholar 

  11. X. Chen, Z. Gong, Q. Wan, et al., Opt. Mater. 44, 48 (2015). https://doi.org/10.1016/j.optmat.2015.02.029

    Article  Google Scholar 

  12. H. M. Rietveld, Acta Crystallogr. 22, 151 (1967).

    Article  CAS  Google Scholar 

  13. Y. I. Kim and F. Izumi, J. Ceram. Soc. Jpn. 102, 401 (1994). https://doi.org/10.2109/jcersj.102.401

    Article  CAS  Google Scholar 

  14. F. Izumi, The Rietveld Method (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  15. J. Barbier, Eur. J. Solid State Inorg. Chem. 31, 163 (1994).

    CAS  Google Scholar 

  16. A. V. Knyazev, M. E. Komshina, A. V. Zhidkov, et al., Russ. J. Inorg. Chem. 58, 1172 (2013).

    Article  CAS  Google Scholar 

  17. El H. Arbib, J.-P. Chaminade, J. Darriet, and B. Elouadi, Solid State Sci. 2, 243 (2000). https://doi.org/10.1016/S1293-2558(00)00132-1

    Article  CAS  Google Scholar 

  18. R. S. Bubnova, M. G. Krzhizhanovskaya, and S. K. Filatov, The Manual on Thermal X-ray Diffraction Analysis of Polycrystals, Part 1: Experiments and Data Interpretation (St.-Petersburg Univ., St.-Petersburg, 2011).

  19. V. I. Pet’kov, A. S. Dmitrienko, and A. I. Bokov, J. Therm. Anal. Calorim. 133, 199 (2018). https://doi.org/10.1007/s10973-017-6676-7

    Article  Google Scholar 

  20. B. G. Vats, R. Phatak, K. Krishnan, et al., J. Alloys Compd. 690, 561 (2017). https://doi.org/10.1016/j.jallcom.2016.08.122

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the Shared Facilities Center “new Materials and Resource-Saving Technologies” of the Lobachevskii National Research State University was used in this work.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-29-12063) with the use of the equipment of the Shared Facilities Center “New Materials and Resource-Saving Technologies” of the Lobachevskii National Research State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Pet’kov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pet’kov, V.I., Bokov, A.I., Asabina, E.A. et al. Synthesis, Crystal Structure, and Thermal Expansion of Sodium Barium Zirconium Phosphate–Sulfate. Russ. J. Inorg. Chem. 64, 1354–1358 (2019). https://doi.org/10.1134/S0036023619110159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619110159

Keywords:

Navigation