Skip to main content
Log in

Tin Domain Growth on Quasi-Two-Dimensional CdTe and CdSe Nanoparticles

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Tin domain growth on quasi-two-dimensional colloidal CdSe and CdTe nanoparticles having the zinc blende structure has been studied. The initial quasi-two-dimensional CdSe and CdTe nanoparticles having lateral sizes of 100–200 nm were prepared by a colloidal method. Tin domain growth was accomplished in tetrahydrofuran via the reduction of a tin(II) salt by tetrabutylammonium borohydride. The tin domains had sizes of 10–20 nm as probed by TEM. In case of CdSe nanoparticles, tin domains were grown inside the inner cavities of initially rolled nanoparticles. A β-tin phase was identified by X-ray diffraction. The absorption spectra featured the broadening of exciton bands corresponding to quasi-two-dimensional nanoparticles, the spectral positions of absorption peaks remaining almost unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ithurria and B. Dubertret, J. Am. Chem. Soc. 130, 16504 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. S. Ithurria, M. D. Tessier, B. Mahler, et al., Nat. Mater. 10, 936 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Z. Chen, B. Nadal, B. Mahler, et al., Adv. Funct. Mater. 24, 295 (2014).

    Article  CAS  Google Scholar 

  4. F. Fan, P. Kanjanaboos, M. Saravanapavanantham, et al., Nano Lett. 15, 4611 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. A. G. Vitukhnovsky, V. S. Lebedev, A. S. Selyukov, et al., Chem. Phys. Lett. 619, 185 (2015).

    Article  CAS  Google Scholar 

  6. J. Q. Grim, S. Christodoulou, F. Di Stasio, et al., Nat. Nanotechnol. 9, 891 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. C. She, I. Fedin, D. S. Dolzhnikov, et al., Nano Lett. 14, 2772 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. E. Lhuillier, J.-F. Dayen, D. O. Thomas, et al., Nano Lett. 15, 1736 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. D. O. Sigle, L. Zhang, S. Ithurria, et al., J. Phys. Chem. Lett. 6, 1099 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. D. Tessier, C. Javaux, I. Maksimovic, et al., ACS Nano 6, 6751 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. M. D. Tessier, B. Mahler, B. Nadal, et al., Nano Lett. 13, 3321 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. B. Mahler, B. Nadal, C. Bouet, et al., J. Am. Chem. Soc. 134, 18591 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. M. S. Sokolikova, N. N. Shlenskaya, V. F. Kozlovskii, et al., Russ. J. Inorg. Chem. 59, 1069 (2014).

    Article  CAS  Google Scholar 

  14. R. Costi, A. E. Saunders, and U. Banin, Angew. Chem., Int. Ed. Engl. 49, 4878 (2010).

    Article  CAS  Google Scholar 

  15. S. Naskar, A. Schlosser, J. F. Miethe, et al., Chem. Mater. 27, 3159 (2015).

    Article  CAS  Google Scholar 

  16. B. Mahler, L. Guillemot, L. Bossard-Giannesini, et al., J. Phys. Chem. C 120, 12351 (2016).

    Article  CAS  Google Scholar 

  17. H. Chauhan, Yo. Kumar, J. Dana, et al., Nanoscale 8, 15802 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. K. Kravchyk, L. Protesescu, M. I. Bodnarchuk, et al., J. Am. Chem. Soc. 135, 4199 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. A. Barfuss, L. Dudy, M. R. Scholz, et al., Phys. Rev. Lett. 111, 157205 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Yo. Ohtsubo, P. Le Fèvre, F. Bertran, and A. Taleb-Ibrahimi, Phys. Rev. Lett. 111, 216401 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. S. Ithurria, G. Bousquet, and B. Dubertret, J. Am. Chem. Soc. 133, 3070 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. S. Pedetti, B. Nadal, E. Lhuillier, et al., Chem. Mater. 25, 2455 (2013).

    Article  CAS  Google Scholar 

  23. R. Marx and K. J. Range, J. Less-Common Met. 155, 49 (1989).

    Article  CAS  Google Scholar 

  24. D. H. Son, S. M. Hughes, Ya. Yin, and A. P. Alivisatos, Science 306, 1009 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Vasiliev.

Additional information

Original Russian Text © E.P. Lazareva, V.F. Kozlovskii, R.B. Vasiliev, A.M. Gaskov, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 5, pp. 611–615.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazareva, E.P., Kozlovskii, V.F., Vasiliev, R.B. et al. Tin Domain Growth on Quasi-Two-Dimensional CdTe and CdSe Nanoparticles. Russ. J. Inorg. Chem. 63, 642–646 (2018). https://doi.org/10.1134/S0036023618050133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618050133

Navigation