Skip to main content
Log in

Sonochemically assisted colloidal route to CdSe quantum dot assemblies: an alternative way to further fine-tune the size-dependent properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Continuous-wave heterogeneous sonochemical method was developed to synthesize 3D assemblies composed by QDs of metastable (cubic) modification of CdSe with sphalerite structural type. 3D QD assemblies were deposited in thin film form and as bulk precipitates. Structure, surface morphology, optical absorption as well as charge carriers’ and phonon confinement effects were studied in details. The average nanocrystal radius, calculated by the Scherrer and Williamson–Hall methods, diminishes from 2.7 nm for samples synthesized by conventional colloidal chemical route to 2.0 nm for samples synthesized by sonochemical route. Upon post-deposition thermal annealing this value increases to 12.0 nm. QD size decrease is followed by increase of the uni-directional lattice strain and dislocation density (as defined by Hirsch), as well as by decrease of the lattice constant value. Previous findings were justified by analysis of X-ray diffraction peaks shape, which were found to be dominated by the particle size-distribution, instead of non-uniform strain. The energy of the fundamental direct \(\Gamma_{8}^{v} \to \Gamma_{6}^{c}\) interband electronic transition, computed from optical absorption data within parabolic approximation for the dispersion relation, shifts from 2.67 eV for sonochemically deposited samples and 2.08 eV for chemically deposited ones, to 1.77 eV upon post-deposition thermal treatment (close to the bulk value of 1.74 eV). The type of “interband” transitions does not change upon dimensionality reduce. Enhanced band gap energy blue shift upon average QD size decrease is followed by oscillator strength increase. Such trends were rationalized in terms of 3D confinement effects on charge carriers’ motion. Experimentally observed band gap energies agree very well with the predictions of the effective mass model of Brus. The next direct interband electronic transition, from the spin–orbit split component of the valence band to the conduction band, has been detected and analyzed. The 1LO bands in the Raman spectra of chemically and sonochemically deposited samples appear at 206 and 204 cm−1, as compared to the bulk value of 210 cm−1. The extent of homogeneous broadening of the corresponding band is larger in sonochemically deposited samples, indicating enhanced frequency of phonon–phonon collisions in smaller QDs. The observed frequency shifts are dominated by phonon-dispersion terms, instead of lattice contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.E. Kim, M.A. Islam, L. Avila, I.P. Herman, J. Phys. Chem. B 107, 6318 (2003)

    Article  Google Scholar 

  2. B.S. Kim, M.A. Islam, L.E. Brus, I.P. Herman, J. Appl. Phys. 89, 8127 (2001)

    Article  Google Scholar 

  3. M.V. Artemyev, A.I. Bibik, L.I. Gurinovich, S.V. Gaponenko, H. Jaschinski, U. Woggon, Phys. Stat. Sol. B 224, 393 (2001)

    Article  Google Scholar 

  4. M.V. Artemyev, U. Woggon, H. Jaschinski, L.I. Gurinovich, S.V. Gaponenko, J. Phys. Chem. B 104, 11617 (2000)

    Article  Google Scholar 

  5. Y. Lin, A. Böker, J. He, K. Sill, H. Xiang, C. Abetz, X. Li, J. Wang, T. Ernrick, S. Long, Q. Wang, A. Balazs, T.P. Russell, Nature 434, 55 (2005)

    Article  Google Scholar 

  6. Z.L. Wang, J.S. Yin, Mater. Sci. Eng., A 286, 39 (2000)

    Article  Google Scholar 

  7. W.U. Dittmer, F.C. Simmel, Appl. Phys. Lett. 85, 633 (2004)

    Article  Google Scholar 

  8. G.U. Kulkarni, P.J. Thomas, C.N.R. Rao, Pure Appl. Chem. 74, 1581 (2002)

    Article  Google Scholar 

  9. C.F. Landes, S. Link, M.B. Mohamed, B. Nikoobakht, M.A. El-Sayed, Pure Appl. Chem. 74, 1675 (2002)

    Article  Google Scholar 

  10. Y.A. Vlasov, N. Yao, D.J. Norris, Adv. Mater. 11, 165 (1999)

    Article  Google Scholar 

  11. E. Rabani, D.R. Reichman, P.L. Geissler, L.E. Brus, Nature 426, 271 (2003)

    Article  Google Scholar 

  12. U. Landman, W.D. Luedtke, Faraday Discuss. 124, 1 (2004)

    Article  Google Scholar 

  13. A.D. Yoffe, Adv. Phys. 50, 1 (2001)

    Article  Google Scholar 

  14. A.D. Yoffe, Adv. Phys. 51, 799 (2002)

    Article  Google Scholar 

  15. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)

    Article  Google Scholar 

  16. R.F. Khairutdinov, Russ. Chem. Rev. 67, 109 (1998)

    Article  Google Scholar 

  17. T. Trinade, P. O’Brien, N.L. Pickett, Chem. Mater. 13, 3843 (2001)

    Article  Google Scholar 

  18. A.K. Pal, A. Mondal, S. Chaudhuri, Vacuum 41, 1460 (1990)

    Article  Google Scholar 

  19. T. Cruszecki, B. Holmström, Solar Energy Mater. Solar Cells 31, 227 (1993)

    Article  Google Scholar 

  20. S. Ericsson, T. Gruszecki, P. Carlsson, B. Holmström, Thin Solid Films 269, 14 (1995)

    Article  Google Scholar 

  21. A. Van Calster, F. Vanfleteren, I. De Rycke, J. De Baets, J. Appl. Phys. 64, 3282 (1988)

    Article  Google Scholar 

  22. N.G. Patel, C.J. Panchal, K.K. Makhijia, Cryst. Res. Technol. 29, 1013 (1994)

    Article  Google Scholar 

  23. V.A. Smyntyana, V. Gerasutenko, S. Kashulis, G. Mattogno, S. Reghini, Sens. Actuators 19, 464 (1994)

    Article  Google Scholar 

  24. B. Bonello, B. Fernandez, J. Phys. Chem. Solids 54, 209 (1993)

    Article  Google Scholar 

  25. J.C. Schottmiller, R.W. Francis, C. Wood, U.S. patent 3,884,688, 1975

  26. R. Lozada-Morales, M. Rubin-Falfán, O. Portillo-Moreno, J. Pérez-Álvarez, R. Hotos-Cabrera, C. Avelino-Flores, O. Zelaya-Angel, O. Guzmán-Mandujano, P. del Angel, J.L. Martinez-Montes, Baños-López. J. Electrochem. Soc. 146, 2546 (1999)

    Article  Google Scholar 

  27. S. Gorrer, G. Hodes, J. Phys. Chem. 36, 4215 (1987)

    Google Scholar 

  28. R.C. Kainthla, D.K. Pandya, K.L. Chopra, J. Electrochem. Soc. 127, 277 (1980)

    Article  Google Scholar 

  29. R.C. Kainthla, D.K. Pandya, K.L. Chopra, J. Electrochem. Soc. 129, 99 (1980)

    Article  Google Scholar 

  30. N. Samarth, H. Luo, J.K. Furdyone, S.B. Quadvi, Y.R. Lee, A.K. Ramdas, N. Otsuka, Appl. Phys. Lett. 54, 2162 (1989)

    Article  Google Scholar 

  31. L.P. Colletti, B.H. Flowers, J.L. Stickney, J. Electrochem. Soc. 145, 1442 (1998)

    Article  Google Scholar 

  32. T. Hayashi, R. Saeki, T. Suzuki, M. Fukaya, Y. Ema, J. Appl. Phys. 38, 5719 (1990)

    Article  Google Scholar 

  33. G.M. Fofanov, G.A. Kitaev, Russ. J. Inorg. Chem. 14, 322 (1969)

    Google Scholar 

  34. O. Portillo-Moreno, R. Lozda-Morales, M. Rubín-Falfán, J.A. Pérez-Álvarez, O. Zelaya-Angel, L. Baños-Lórez, J. Phys. Chem. Solids 61, 1751 (2000)

    Article  Google Scholar 

  35. B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 172, 381 (2003)

    Article  Google Scholar 

  36. K.S. Suslick, G.J. Price, Annu. Rev. Mater. Sci. 29, 295 (1999)

    Article  Google Scholar 

  37. K.S. Suslick, in Encyclopedia of Physical Science and Technology, 3rd edn., ed. by R.A. Meyers (Academic Press, Inc., San Diego, 2001), pp. 1–22

    Google Scholar 

  38. T.G. Leighton, The Acoustic Bubble (Academic Press, London, 1994)

    Google Scholar 

  39. Y.T. Didenko, K.S. Suslick, Nature 418, 394 (2002)

    Article  Google Scholar 

  40. W.B. McNamara, Y.T. Didenko, K.S. Suslick, Nature 401, 772 (1999)

    Article  Google Scholar 

  41. G. Dantsin, K.S. Suslick, J. Am. Chem. Soc. 122, 5214 (2000)

    Article  Google Scholar 

  42. W.B. McNamara, Y.T. Didenko, K.S. Suslick, J. Phys. Chem. B 107, 7303 (2003)

    Article  Google Scholar 

  43. T.J. Mason, J.P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry (Wiley, Chichester, UK, 1988)

    Google Scholar 

  44. A. Gedanken, Ultrason. Sonochem. 11, 47 (2004)

    Article  Google Scholar 

  45. B. Pejova, I. Grozdanov, Thin Solid Films 515, 5203 (2007)

    Article  Google Scholar 

  46. B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 177, 4785 (2004)

    Article  Google Scholar 

  47. B. Pejova, I. Grozdanov, J. Solid State Chem. 158, 49 (2001)

    Article  Google Scholar 

  48. Microsoft Excel 1985–2003, Microsoft Corporation

  49. Microcal Origin, Version 5.0, 1991–1997 Microcal Software, Inc

  50. S. Gorer, G. Hodes, J. Phys. Chem. 98, 5338 (1994)

    Article  Google Scholar 

  51. B. Pejova, in Progress in Solid State Chemistry Research, ed. by R.W. Buckley (Nova Science Publishers, New York, 2007), pp. 55–115

    Google Scholar 

  52. A.C. Zettlemoyer, Nucleation (Marcel Dekker, New York, 1969)

    Google Scholar 

  53. M. Ohring, The Materials Science of Thin Films (Academic Press, New York, 1992)

    Google Scholar 

  54. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Buterworth & Heinemann, London, 1997)

    Google Scholar 

  55. S. Xu, H. Wang, J.-J. Zhu, H.-Y. Chen, J. Cryst. Growth 234, 263 (2002)

    Article  Google Scholar 

  56. J. Zhu, Y. Koltypin, A. Gedanken, Chem. Mater. 12, 73 (2000)

    Article  Google Scholar 

  57. Y. Xie, X. Zheng, X. Jiang, J. Lu, L. Zhu, Inorg. Chem. 41, 387 (2002)

    Article  Google Scholar 

  58. JCPDS-International Center for Diffraction Data 75-1462

  59. B. Pejova, I. Bineva, J. Phys. Chem. C 117, 7303 (2013)

    Article  Google Scholar 

  60. B. Pejova, B. Abay, J. Phys. Chem. C 115, 23241 (2011)

    Article  Google Scholar 

  61. B. Pejova, I. Grozdanov, D. Nesheva, A. Petrova, Chem. Mater. 20, 2551 (2008)

    Article  Google Scholar 

  62. H. Hofmeister, D. Nesheva, Z. Levi, S. Hopfe and S. Matthias, in Proceeding of the EUREM 12, Brno, ed. by C.L. Frank, F. Ciampor, Czechoslovak Society for Electron Microscopy, Brno (2000), p. 365

  63. S. Enzo, G. Fagherazzi, A. Benedetti, S. Polizzi, J. Appl. Cryst. 21, 536 (1988)

    Article  Google Scholar 

  64. A. Benedetti, G. Fagherazzi, S. Enzo, M. Battagliarin, J. Appl. Cryst. 21, 543 (1988)

    Article  Google Scholar 

  65. M.T. Weller, Inorganic Materials Chemistry (Oxford University Press, Oxford, 1997)

    Google Scholar 

  66. G.K. Williamson, W.H. Hall, Acta Met. 1, 22 (1955)

    Article  Google Scholar 

  67. P. Atkins, J. De Paula, Atkins’ Physical Chemistry, 8th edn. (Oxford University Press, Oxford, 2006)

    Google Scholar 

  68. P.B. Hirsch, Prog. Math. Phys. 6, 236 (1956)

    Article  Google Scholar 

  69. M.A.S.M. Yunos, Z.A. Talib, W.M.M. Yunus, J. Chem. Eng. Mater. Sci. 2, 103 (2011)

    Google Scholar 

  70. A. Baldereshi, N.G. Lipari, Phys. Rev. B 3, 439 (1971)

    Article  Google Scholar 

  71. S. Adachi, Phys. Rev. B 12, 9569 (1991)

    Article  Google Scholar 

  72. N. Chestnoy, R. Hull, L.E. Brus, J. Chem. Phys. 85, 2237 (1986)

    Article  Google Scholar 

  73. B. Pejova, J. Solid State Chem. 181, 1961 (2008)

    Article  Google Scholar 

  74. C.F. Klingshirn, Semiconductor Optics (Springer, Berlin, 1997)

    Google Scholar 

  75. C.R. Kagan, C.B. Murray, M. Nirmal, M.G. Bawendi, Phys. Rev. Lett. 76, 1517 (1996)

    Article  Google Scholar 

  76. C.R. Kagan, C.B. Murray, M.G. Bawendi, Phys. Rev. B 54, 8633 (1996)

    Article  Google Scholar 

  77. F. Gindele, R. Westphäling, U. Woggon, L. Spanhel, V. Ptatschek, Appl. Phys. Lett. 71, 2181 (1997)

    Article  Google Scholar 

  78. B. Pejova, Semicond. Sci. Technol. 29, 045007 (2014)

    Article  Google Scholar 

  79. B. Pejova, J. Solid State Chem. 207, 147 (2013)

    Article  Google Scholar 

  80. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  Google Scholar 

  81. L.E. Brus, J. Chem. Phys. 90, 2555 (1986)

    Article  Google Scholar 

  82. M.L. Steigerwald, L.E. Brus, Annu. Rev. Mater. Sci. 19, 471 (1989)

    Article  Google Scholar 

  83. M.L. Steigerwald, L.E. Brus, Acc. Chem. Res. 23, 183 (1990)

    Article  Google Scholar 

  84. Y. Wang, A. Suna, W. Mahler, R. Kasowski, J. Chem. Phys. 87, 7315 (1987)

    Article  Google Scholar 

  85. A.B. Novoselova (ed.), Physical and Chemical Properties of SemiconductorsHandbook (Wiley, Moscow, 1978)

    Google Scholar 

  86. B. Pejova, I. Grozdanov, Mater. Chem. Phys. 90, 35 (2005)

    Article  Google Scholar 

  87. O.I. Micic, S.P. Ahrenkiel, A.J. Nozik, Appl. Phys. Lett. 78, 4022 (2001)

    Article  Google Scholar 

  88. B.S. Kim, L. Avila, L.E. Brus, I.P. Herman, Appl. Phys. Lett. 76, 3715 (2000)

    Article  Google Scholar 

  89. Y. Wang, N. Herron, J. Phys. Chem. 95, 525 (1991)

    Article  Google Scholar 

  90. P.Y. Yu, Solid State Comm. 19, 1087 (1976)

    Article  Google Scholar 

  91. C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menéndez-Proupin, A.I. Ekimov, Phys. Rev. B 57, 4664 (1998)

    Article  Google Scholar 

  92. B. Pejova, J. Phys. Chem. C 177, 19689 (2013)

    Google Scholar 

  93. A.V. Gomonnai, YuM Azhniuk, V.O. Yukhymchuk, M. Kranjčec, V.V. Lopushansky, Phys. Statut. Solidi B 239, 490 (2003)

    Article  Google Scholar 

  94. G. Scamarcio, M. Lugará, D. Manno, Phys. Rev. B 45, 13792 (1992)

    Article  Google Scholar 

  95. Y.-N. Hwang, S. Shin, H.L. Park, S.-H. Park, U. Kim, H.S. Jeong, E.-J. Shin, D. Kim, Phys. Rev. B 54, 15120 (1996)

    Article  Google Scholar 

  96. E.S.F. Neto, N.O. Dantas, S.W. da Silva, P.C. Morais, M.A. Pereira-da-Silva, J. Raman Spectrosc. 41, 1302 (2010)

    Article  Google Scholar 

  97. M.P. Chamberlain, C. Trallero-Giner, M. Cardona, Phys. Rev. B 51, 1680 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

This study has been supported under the bilateral agreement between the Bulgarian Academy of Sciences and Macedonian Academy of Sciences and Arts, project “Investigation of the surface morphology of nanostructured thin films by scanning probe microscopy”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Pejova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pejova, B., Bineva, I. Sonochemically assisted colloidal route to CdSe quantum dot assemblies: an alternative way to further fine-tune the size-dependent properties. J Mater Sci: Mater Electron 27, 10600–10615 (2016). https://doi.org/10.1007/s10854-016-5155-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5155-4

Keywords

Navigation