Skip to main content
Log in

Polymer Technology of Porous SiC Ceramics Using Milled SiO2 Fibers

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The paper describes a developed polymer composition and a process for manufacturing highporous chemically pure silicon carbide ceramics from this composition, using milled industrial wastes of quartz fiber non-woven fabrics as the source of silicon dioxide, which is important as a rational utilization of these wastes. The necessity of pre-milling of the SiO2 fibers was experimentally substantiated. Without this stage, the duration of treatment at 1400°C under dynamic vacuum considerably (≥12 h) increased, because of the non-uniform distribution of the components in the polymer composite. In the case of stoichiometric ratio of SiO2 and carbon formed upon pyrolysis of the polymeric phenol binder, the obtained SiC ceramic contained a large amount of unreacted carbon. This indicaties that side reactions take place to give volatile silicon monoxide, which is distilled off from the reactor. The effects of the milling time of SiO2 fibers and the carbothermal reduction temperature on the elemental and phase composition, density, and porosity of the obtained samples and the ultimate compressive strength were studied. Analysis of the experimental results served for optimization of the composition of the initial polymer composites. As a result, highly porous (83%) and relatively strong (ultimate compressive strength of 8.2MPa) SiC-ceramic samples free from unreacted carbon and silicon dioxide and other stubborn impurities were fabricated at 1400°C (dynamic vacuum, heat treatment for 4 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Dicarlo, Ceramic Matrix Composites, 217 (2015). doi 10.1002/9781118832998.ch7

    Google Scholar 

  2. J. Kriegesmann, Comprehensive Hard Materials (Elsevier, Amsterdam, 2014), vol. 2, p. 89. doi 10.1016/B978-0-08-096527-7.00023-4

    Article  CAS  Google Scholar 

  3. Y.-S. Chun and D.-S. Lim, J. Ceram. Soc. Jpn. 122, 577 (2014). doi 10.2109/jcersj2.122.577

    Article  CAS  Google Scholar 

  4. L. Bingfeng, Appl. Mechan. Mater., 416/417, 1693 (2013). doi 10.4028/www.scientific.net/AMM.416-417.1693

    Article  CAS  Google Scholar 

  5. E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., Glass Ceram. 69, 109 (2012). doi 10.1007/s10717-012-9425-1

    Article  CAS  Google Scholar 

  6. Properties and Application of Silicon Carbide, Ed. by G. R. Rijeka (InTech, Croatia, 2011).

  7. Handbook of Ceramic Composites, Ed. by B. N. P. Bansal (Kluwer, Norwell, 2005).

  8. P. Sanchez, J. L. Valverde, F. Dorado, et al., Adv. Mater. Sci. Res. 16, 175 (2013).

    CAS  Google Scholar 

  9. A. L. Spetz and M. Andersson, in: Solid State Gas Sensors— Industrial Application, Springer Series on Chemical Sensors and Biosensors (Methods and Applications), Ed. by M. and M. Lehmann (Springer, Berlin, Heidelberg, 2012), vol. 11, p. 189. doi 10.1007/5346_2011_5

    Article  CAS  Google Scholar 

  10. A. Maity, N. Kayal, and O. Chakrabarti, Ceram. Int. 42, 10058 (2016). doi 10.1016/j.ceramint.2016.03.109

    Article  CAS  Google Scholar 

  11. M. J. Lopez-Robledo, A. Gomez-Martin, J. Ramirez-Rico, and J. Martinez-Fernandez, Int. J. Refract. Met. Hard Mater. 59, 26 (2016). doi 10.1016/j.ijrmhm. 2016.05.004

    Article  CAS  Google Scholar 

  12. C. Ferraro, E. Garcia-Tunon, V. G. Rocha, et al., Adv. Funct. Mater. 26, 1636 (2016). doi 10.1002/adfm. 201504051

    Article  CAS  Google Scholar 

  13. A. C. Terracciano, S. S. Vasu, and N. Orlovskaya, Appl. Energy 179, 228 (2016). doi 10.1016/j.apenergy.2016. 06.128

    Article  CAS  Google Scholar 

  14. X. Liang, Y. Li, J. Liu, et al., Ceram. Int. 42, 13091 (2016). doi 10.1016/j.ceramint.2016.05.093

    Article  CAS  Google Scholar 

  15. S. Mey-Cloutier, C. Caliot, A. Kribus, et al., Sol. Energy 136, 226 (2016). doi 10.1016/j.solener. 2016.06.066

    Article  CAS  Google Scholar 

  16. X. Yan, M. Sahimi, and T. T. Tsotsis, Micropor. Mesopor. Mater. 241, 338 (2017). doi 10.1016/j.micromeso. 2016.12.027

    Article  CAS  Google Scholar 

  17. H. Sui, J. Dong, M. Wu, et al., Can. J. Chem. Eng. 95, 62 (2017). doi 10.1002/cjce.22653

    Article  CAS  Google Scholar 

  18. J. Pan, X. Yan, X. Cheng, et al., Ceram. Int. 42, 12345 (2016). doi 10.1016/j.ceramint.2016.05.007

    Article  CAS  Google Scholar 

  19. A. Gomez-Martin, M. P. Orihuela, J. A. Becerra, et al., Mater. Des. 107, 450 (2016). doi 10.1016/j.matdes. 2016.06.060

    Article  CAS  Google Scholar 

  20. B. Yuan, H. -X. Li, G. Wang, et al., J. Alloys Compd. 684, 613 (2016). doi 10.1016/j.jallcom.2016.05.216

    Article  CAS  Google Scholar 

  21. T. Konegger, C.-C. Tsai, H. Peterlik, et al., Micropor. Mesopor. Mater. 232, 196 (2016). doi 10.1016/j. micromeso.2016.06.027

    Article  CAS  Google Scholar 

  22. W. Shi, B. Liu, X. Deng, et al., J. Eur. Ceram. Soc. 36, 3465 (2016). doi 10.1016/j.jeurceramsoc.2016.05.035

    Article  CAS  Google Scholar 

  23. F. Sandra, A. Ballestero, V. L. Nguyen, et al., J. Membr. Sci. 501, 79 (2016). doi 10.1016/j.memsci.2015.12.015

    Article  CAS  Google Scholar 

  24. W. Guo, H. Xiao, X. Yao, et al., Mater. Des. 100, 1 (2016). doi 10.1016/j.matdes.2016.03.105

    Article  CAS  Google Scholar 

  25. J. Pan, J. Ren, Y. Xie, et al., Res. Chem. Intermed. 43, 3813 (2017). doi 10.1007/s11164-016-2850-y

    Article  CAS  Google Scholar 

  26. Z. Yu, Y. Feng, S. Li, and Y. Pei, J. Eur. Ceram. Soc. 36, 3627 (2016). doi 10.1016/j.jeurceramsoc.2016. 02.003

    Article  CAS  Google Scholar 

  27. M. Mehr, D. T. Moore, J. R. Esquivel-Elizondo, and J. Nino, J. Mater. Sci. 50, 7000 (2015). doi 10.1007/s10853-015-9252-1

    Article  CAS  Google Scholar 

  28. F. Wang Z.-F. Gao, J.-Q. Xu, and Y.-P. Zeng, Wuji Cailiao Xuebao (J. Inorg. Mater., Chin.) 31, 305 (2016). doi 10.15541/jim20150390

    CAS  Google Scholar 

  29. J. Li, W. Yuan, C. Deng, and H. Zhu, J. Eur. Ceram. Soc. 37, 1131 (2017). doi 10.1016/j.jeurceramsoc.2016. 10.025

    Article  CAS  Google Scholar 

  30. D. C. Jana, G. Sundararajan, and K. Chattopadhyay, J. Am. Ceram. Soc. 100, 312 (2017). doi 10.1111/jace. 14544

    Article  CAS  Google Scholar 

  31. F. Wang, J. Yin, D. Yao, et al., Mater. Sci. Eng. A 654, 292 (2016). doi 10.1016/j.msea.2015.12.061

    Article  CAS  Google Scholar 

  32. A. Shimamura, M. Fukushima, M. Hotta, et al., J. Am. Ceram. Soc. 99, 440 (2016). doi 10.1111/jace.13978

    Article  CAS  Google Scholar 

  33. V. G. Resmi, J. P. Deepa, V. Lakshmi, et al., Int. J. Appl. Ceram. Technol. 12, 967 (2015). doi 10.1111/ijac.12358

    Article  CAS  Google Scholar 

  34. D. Han, H. Mei, S. Xiao, et al., J. Eur. Ceram. Soc. 37, 915 (2017). doi 10.1016/j.jeurceramsoc.2016.10.015

    Article  CAS  Google Scholar 

  35. F. Wang, D. Yao, Y. Xia, et al., Ceram. Int. 42, 4526 (2016). doi 10.1016/j.ceramint.2015.11.143

    Article  CAS  Google Scholar 

  36. J. Zhao, H. Ru, Y. Wang, et al., Mater. Lett. 148, 147 (2015). doi 10.1016/j.matlet.2015.02.083

    Article  CAS  Google Scholar 

  37. E. Feilden, E. G.-T. Blanca, F. Giuliani, et al., J. Eur. Ceram. Soc. 36, 2525 (2016). doi 10.1016/j.jeurceramsoc. 2016.03.001

    Article  CAS  Google Scholar 

  38. B. Roman-Manso, F. M. Figueiredo, B. Achiaga, et al., Carbon 100, 318 (2016). doi 10.1016/j.carbon.2015. 12.103

    Article  CAS  Google Scholar 

  39. E. P. Simonenko, A. V. Derbenev, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 62, 863 (2017). doi 10.1134/S0036023617070221

    Article  CAS  Google Scholar 

  40. F. Jiang, J. Wang, Z. An, et al., Adv. Appl. Ceram. 116, 242 (2017). doi 10.1080/17436753.2017.1280253

    Article  CAS  Google Scholar 

  41. V. O. Yukhymchuk, V. S. Kiselov, M. Y. Valakh, et al., J. Phys. Chem. Solids 91, 145 (2016). doi 10.1016/j.jpcs. 2016.01.003

    Article  CAS  Google Scholar 

  42. H. Cui, Y. Zheng, J. Ma, et al., J. Wood Sci. 63, 95 (2017). doi 10.1007/s10086-016-1594-z

    Article  CAS  Google Scholar 

  43. S. Vijayan, P. Wilson, R. Sreeja, and K. Prabhakaran, J. Am. Ceram. Soc. 99, 3866 (2016). doi 10.1111/jace. 14450

    Article  CAS  Google Scholar 

  44. A. Shimamura, M. Fukushima, M. Hotta, et al., J. Ceram. Soc. Jpn. 123, 1106 (2015). doi 10.2109/jcersj2.123.1106

    Article  CAS  Google Scholar 

  45. T. Nardin, B. Gouze, J. Cambedouzou, and O. Diat, Mater. Lett. 185, 424 (2016). doi 10.1016/j.matlet.2016. 09.041

    Article  CAS  Google Scholar 

  46. Z. Li, Y. Wang, and L. An, J. Eur. Ceram. Soc. 37, 61 (2017). doi 10.1016/j.jeurceramsoc.2016.08.023

    Article  CAS  Google Scholar 

  47. S. S. Hossain, S. Sarkar, N. K. Oraon, and A. Ranjan, J. Mater. Sci. 51, 9865 (2016). doi 10.1007/s10853-016-0220-1

    Article  CAS  Google Scholar 

  48. C. Liu, X. Meng, X. Zhang, et al., Ceram. Int. Part A 41, 11091 (2015). doi 10.1016/j.ceramint.2015.05.056

    Article  CAS  Google Scholar 

  49. E. P. Simonenko, N. P. Simonenko, E. K. Papynov, et al., J. Sol-Gel Sci. Technol. 82, 748 (2017). doi 10.1007/s10971-017-4367-2

    Article  CAS  Google Scholar 

  50. N. T. Kuznetsov, V. G. Sevastjanov, E. P. Simonenko, et al., RU Patent 2556599, Jul. 10, 2015.

  51. Y. Kong, X. D. Shen, S. Cui, and Y. Zhong, Chin. J. Inorg. Chem. 30, 2825 (2014).

    CAS  Google Scholar 

  52. H. S. Zhao, Z. G. Liu, Y. Yang, et al., Trans. Nonferrous Met. Soc. Chin. 21, 1329 (2011). doi 10.1016/S1003-6326(11)60861-3

    Article  CAS  Google Scholar 

  53. E. P. Simonenko, N. P. Simonenko, M. A. Zharkov, et al., J. Mater. Sci. 50, 733 (2015). doi 10.1007/s10853-014-8633-1

    Article  CAS  Google Scholar 

  54. I. D. Simonov-Emel’yanov, N. L. Shembel’, E. E. Nikishina, et al., Inorg. Mater. 51, 1066 (2015). doi 10.1134/S0020168515100143

    Article  CAS  Google Scholar 

  55. I. D. Simonov-Emel’janov, N. L. Shembel’, D. V. Drobot, et al., RU Patent 2537595, Jan. 10, 2015.

  56. I. D. Simonov-Emel’janov, N. L. Shembel’, M. A. Zharkov, et al. RU Patent 2542275, Feb. 20, 2015.

  57. N. L. Shembel, I. D. Simonov-Emeljanov, E. P. Simonenko, et al., RU Patent 2605257, Dec. 20, 2016.

  58. R. G. Pavelko, V. G. Sevast’yanov, Yu. S. Ezhov, and N. T. Kuznetsov, Inorg. Mater. 43, 700 (2007). doi 10.1134/S0020168507070059

    Article  CAS  Google Scholar 

  59. V. G. Sevastyanov, Y. S. Ezhov, E. P. Simonenko, and N. T. Kuznetsov, Mater. Sci. Forum. 457–460, 59 (2004). doi 10.4028/www.scientific.net/MSF.457-460.59

    Article  Google Scholar 

  60. E. P. Simonenko, N. P. Simonenko, A. V. Derbenev, et al., Russ. J. Inorg. Chem. 58, 1143 (2013). doi 10.1134/S0036023613100215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Simonenko.

Additional information

Original Russian Text © E.P. Simonenko, N.P. Simonenko, N.L. Shembel’, I.D. Simonov-Emel’yanov, V.G. Sevastyanov, N.T. Kuznetsov, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 5, pp. 539–549.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Simonenko, N.P., Shembel’, N.L. et al. Polymer Technology of Porous SiC Ceramics Using Milled SiO2 Fibers. Russ. J. Inorg. Chem. 63, 574–582 (2018). https://doi.org/10.1134/S0036023618050030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618050030

Navigation