Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 2, pp 141–148 | Cite as

La1.8Sr0.2Ni0.8M0.2O4 (M = Fe, Co, or Cu) Complex Oxides: Synthesis, Structural Characterization, and Dielectric Properties

  • T. I. Chupakhina
  • N. V. Mel’nikova
  • E. A. Yakovleva
  • Yu. A. Nikitina
Synthesis and Properties of Inorganic Compounds
  • 17 Downloads

Abstract

New solid solutions La1.8Sr0.2Ni0.8M0.2O4 (M = Fe, Co, or Cu) have been prepared, and their crystal- chemical characteristics and electric properties studied. The studied materials have been shown to have activation-time conductivity. Structural distortions have been found to affect the dielectric properties of ceramic samples. La1.8Sr0.2Ni0.8M0.2O4 is observed to have the greatest distortion of АО9 coordination polyhedra and a higher dielectric constant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yu. Pikalova, N. M. Bogdanovich, A. Kolchugin, et al., Proc. Eng. 98, 105 (2014).CrossRefGoogle Scholar
  2. 2.
    F. Mauvy, C. Lalanne, J. M. Bassat, et al., J. Eur. Ceram. Soc. 25, 2669 (2005).CrossRefGoogle Scholar
  3. 3.
    T. Nakamura, K. Yashiro, K. Sato, and J. Mizusaki, Solid State Ionics 180, 368 (2009).CrossRefGoogle Scholar
  4. 4.
    G. Amow and S. J. Skinner, J. Solid State Electrochem. 10, 538 (2006).CrossRefGoogle Scholar
  5. 5.
    M. Khairy, P. Odier, and J. Choisnet, J. Phys. Colloques 47, C1–831 (1986).CrossRefGoogle Scholar
  6. 6.
    B. Rivas-Muras, J. Mira, A. Fondado, et al., Bull. Soc. Esp. Ceram. 45, 169 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Krohns, P. Lunkenheimer, Ch. Kant, et al., Preprint arXiv:0811.1556 (2008).Google Scholar
  8. 8.
    S. Krohns, P. Lunkenheimer, and Ch. Kant, et al., Appl. Phys. Lett. 94, 122903 (2009).CrossRefGoogle Scholar
  9. 9.
    P. Sippel, S. Krohns, E. Thoms, et al., Eur. Phys. J. B 85, 235 (2012).CrossRefGoogle Scholar
  10. 10.
    A. Chouket, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, et al., J. Alloys Compd. 662, 467 (2016).CrossRefGoogle Scholar
  11. 11.
    X. Ch. Fan, X. M. Chen, and X. Q. Liu, Chem. Mater. 20, 4092 (2008).CrossRefGoogle Scholar
  12. 12.
    Ch. Y. Shi, Zh. B. Hu, and Y. M. Hao, J. Alloys Compd. 509, 1333 (2011).CrossRefGoogle Scholar
  13. 13.
    S. S. Batsanov, V. I. Galko, and K. V. Papugin, Neorgan. Mater. 46, 1500 (2010).Google Scholar
  14. 14.
    S. J. Skinner and J. A. Kilner, Ionics 5, 171 (1999).CrossRefGoogle Scholar
  15. 15.
    A. P. Khandale, M. G. Bansod, and S. S. Bhoga, Solid State Ionics 276, 127 (2015).CrossRefGoogle Scholar
  16. 16.
    T. I. Chupakhina, O. I., Vladimirova E. V. Gyrdasova, and R. F. Samigullina, Russ. J. Inorg. Chem. 60, 1184 (2015).CrossRefGoogle Scholar
  17. 17.
    T. I. Chupakhina, N. I. Kadyrova, N. V. Melnikova, et al., Mater. Res. Bull. 77, 190 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. I. Chupakhina
    • 1
  • N. V. Mel’nikova
    • 2
  • E. A. Yakovleva
    • 2
  • Yu. A. Nikitina
    • 1
    • 2
  1. 1.Institute of Solid-State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal University Named after Eltsinthe First Russian PresidentYekaterinburgRussia

Personalised recommendations