Skip to main content
Log in

Recent developments in Ruddlesden–Popper nickelate systems for solid oxide fuel cell cathodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Motivated by recent work on the Ruddlesden–Popper material, \({\hbox{La}}_{2} {\hbox{NiO}}_{{4 + \delta }} ,\) which was shown to be a superior oxide-ion conductor than conventional solid-oxide fuel cell cathode perovskite materials, we undertook A- and B-site doping studies of the Ruddlesden–Popper nickelate series in an attempt to identify other candidates for cathode application. In this paper, we summarize our most significant results for the \({\hbox{La}}_{{\text{2}}} {\hbox{Ni}}_{{1 - x}} {\hbox{Co}}_{x} {\hbox{O}}_{{4 + \delta }}\)and \({\hbox{La}}_{{2 - y}} {\hbox{Sm}}_{y} {\hbox{NiO}}_{{4 + \delta }}\)systems and more recently, the higher-order Ruddlesden–Popper phases La n+1Ni n O3n+1 (n=2 and 3), which show greater promise as cathode materials than the n=1 compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kharton VV, Viskup AP, Naumovich EN, Marques FMB (1999) J Mater Chem 9:2623

    Article  CAS  Google Scholar 

  2. Skinner SJ, Kilner JA (2000) Solid State Ionics 135:709

    Article  CAS  Google Scholar 

  3. Kharton VV, Yaremchenko AA, Tsipis EV, Frade JR (2003) Oxygen transport and electrochemical activity of La2NiO4-based cathode materials. In: Singhal SC, Dokiya M (eds) Proceedings of eighth international symposium on solid oxide fuel cells (SOFC-VIII), Paris, France, 2003, PV 2003-07. The Electrochemical Society, Pennington, NJ, pp 561–570

    Google Scholar 

  4. Ganguly P, Rao CNR (1973) Mater Res Bull 8:405

    Article  CAS  Google Scholar 

  5. Bassat JM, Odier P, Loup JP (1994) J Solid State Chem 110:124

    Article  CAS  Google Scholar 

  6. Jorgensen JD, Dabrowski B, Pei S, Richards DR, Hinks DG (1989) Phys Rev B 40:2187

    Article  CAS  Google Scholar 

  7. Rodriguez-Carvajal J, Fernandez-Diaz MT, Martinez JL (1991) J Phys Condensed Matter 3:3215

    Article  CAS  Google Scholar 

  8. Rice DE, Buttrey DJ (1993) J Solid State Chem 105:197

    Article  CAS  Google Scholar 

  9. Bassat JM, Boehm E, Grenier JC, Mauvy F, Dordor P, Pouchard M (2002) In: Huijsmans J (ed) Fifth European solid oxide fuel cell forum, vol 2. Lucerne, Switzerland, p 586

    Google Scholar 

  10. Boehm E, Bassat JM, Dordor P, Mauvy F, Grenier JC, Stevens P (2005) Solid State Ionics 176:2717

    Article  CAS  Google Scholar 

  11. Tichy RS, Huang KQ, Goodenough JB (2000) In: Wachsman ED, Weppner W, Traversa E, Vanysek P, Yamazoe N, Liu ML (eds) The Electrochemical Society proceedings, vol 2000-32. The Electrochemical Society, Phoenix, Arizona, p 171

    Google Scholar 

  12. Kilner JA, Shaw CKM (2002) Solid State Ionics 154–155:523

    Article  Google Scholar 

  13. Amow G, Whitfield P, Davidson I, Munnings CN, Skinner SJ (2003) The Electrochemical Society proceedings, Orlando, USA (in press)

  14. Yaremchenko AA, Kharton VV, Patrakeev MV, Frade JR (2003) J Mater Chem 13:1136

    Article  CAS  Google Scholar 

  15. Pechini MP (1967) US Patent 3,330,697

  16. Kilner JA (1996) In: Poulsen FW (ed) High temperature electrochemistry: ceramics and metals, proceedings of the Risoe international symposium on materials science. Risoe National Laboratory, Roskilde, Denmark

    Google Scholar 

  17. Munnings CN, Skinner SJ, Amow G, Whitfield PS, Davidson IJ (2005) Solid State Ionics 176:1895

    Article  CAS  Google Scholar 

  18. Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH (1992) Solid State Ionics 53–56:597

    Article  Google Scholar 

  19. De Souza RA, Kilner JA (1998) Solid State Ionics 106:175

    Article  Google Scholar 

  20. Shaw CKM, Kilner JA (2000) In: McEvoy J (ed) Fourth European solid oxide fuel cell forum, vol 2. Lucerne, Switzerland, p 611

    Google Scholar 

  21. Skinner SJ, Munnings CN, Amow G, Whitfield P, Davidson I (2003) In: Singhal SC, Dokiya M (eds) Proceedings of eighth international symposium on solid oxide fuel cells (SOFC-VIII), Paris, France, 2003, PV 2003-07. The Electrochemical Society, Pennington, NJ, p 552

    Google Scholar 

  22. Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) J Mater Sci 36:1105

    Article  CAS  Google Scholar 

  23. Stevenson JW, Hasinska K, Canfield NL, Armstrong TR (2000) J Electrochem Soc 147:3213

    Article  CAS  Google Scholar 

  24. Bassat JM, Odier P, Villesuzanne A, Marin C, Pouchard M (2004) Solid State Ionics 167:341

    Article  CAS  Google Scholar 

  25. Boehm E, Bassat JM, Mauvy F, Dordor P, Grenier JC, Pouchard M (2000) In: McEvoy J (ed) Fourth European solid oxide fuel cell forum, vol 2, Lucerne, Swizterland, p 717

    Google Scholar 

  26. Amow G, Davidson IJ (2005) In: Singhal SC, Misuzaki J (eds) SOFC-IX, vol 2005–007. Electrochemical Society, Quebec City, Quebec, Canada, p 1745

    Google Scholar 

  27. Vashuk VV, Olshevskaya, Savchenko VF, Puchkaeva EY (1994) Inorg Mater 30:1357

    Google Scholar 

  28. Carvalho MD, Cruz MM, Wattiaux A, Bassat JM, Costa FMA, Godinho M (2000) J Appl Phys 88:544

    Article  CAS  Google Scholar 

  29. Zhang Z, Greenblatt M, Goodenough JB (1994) J Solid State Chem 108:402

    Article  CAS  Google Scholar 

  30. Zhang Z, Greenblatt M (1995) J Solid State Chem 117:236

    Article  CAS  Google Scholar 

  31. Amow G, Davdison IJ, Skinner SJ (2005) Solid State Ionics (in press)

  32. Odier P, Nigara Y, Coutures J, Sayer M (1985) J Solid State Chem 56:32

    Article  CAS  Google Scholar 

  33. van Doorn RE, Fullarton IC, de Souza RA, Kilner JA, Bouwmeester HJM, Burggraaf AJ (1997) Solid State Ionics 96:1

    Article  Google Scholar 

  34. Lane JA, Benson SJ, Waller D, Kilner JA (1999) Solid State Ionics 121:201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Research Council Canada and the British Council for funding of the work on the \({\hbox{La}}_{2} {\hbox{Ni}}_{{1 - x}} {\hbox{Co}}_{x} {\hbox{O}}_{{4 + \delta }}\) and \({\hbox{La}}_{{2 - x}} {\hbox{Sm}}_{x} {\hbox{NiO}}_{{4 + \delta }}\) systems through the Joint Science and Technology program, grant reference 00CRP12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Amow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amow, G., Skinner, S.J. Recent developments in Ruddlesden–Popper nickelate systems for solid oxide fuel cell cathodes. J Solid State Electrochem 10, 538–546 (2006). https://doi.org/10.1007/s10008-006-0127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0127-x

Keywords

Navigation