Skip to main content
Log in

A density-functional theory of hydrogen adsorption on indium nitride nanotubes

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

First-principles calculations based on density functional theory (DFT) are used to study the chemisorption properties of one, two, and four hydrogen atoms on the zigzag and armchair single-walled InN nanotubes (InNNTs).The results indicate that the H atom is strongly bounded to the exterior wall of (4, 4) InNNTs compared with the (7, 0) InNNTs, while the chemisorption energies corresponding to the most stable configuration of H2 dissociation and a single H atom are found to be–3.85 and–3.26 eV, respectively. Furthermore, the effect of the hydrogen storage on the geometries and electronic properties of related InN nanotubes were also discussed. The computed density of states (DOS) indicates that the energy gap of the zigzag and armchair InN nanotubes on hydrogen adsorptions are significantly decreased which can increase the electrical conductance of the tubes. Therefore, InN nanotubes due to the high binding energy can be used for hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Mohammad and H. Morkoc, Prog. Quantum Electron. 20, 361 (1996).

    Article  CAS  Google Scholar 

  2. I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).

    Article  CAS  Google Scholar 

  3. L. Yin, Y. Bando, D. Golberg, and M. Li, Adv. Mater. 16, 1833 (2004).

    Article  CAS  Google Scholar 

  4. K. Sardar, F. L. Deepak, A. Govindaraj, et al., Small 1, 91 (2005).

    Article  CAS  Google Scholar 

  5. N. C. Chen, P. H. Chang, Y. N. Wang, et al., Appl. Phys. Lett. 87, 212111 (2005).

    Article  Google Scholar 

  6. F. Zhang, Q. Wu, Y. Zhang, et al., Appl. Surf. Sci. 258, 9701 (2012).

    Article  CAS  Google Scholar 

  7. O. Ambacher, M. S. Brandt, R. Dimitrov, et al., J. Vacuum Sci. Technol. B 14, 3532 (1996).

    Article  CAS  Google Scholar 

  8. F. Ye, X. M. Cai, X. M. Wang, et al., Acta Phys. Sin. 56, 2342 (2007).

    Google Scholar 

  9. N. Ohba, K. Miwa, N. Nagasako, and A. Fukumoto, Phys. Rev. B 63, 115207 (2001).

    Article  Google Scholar 

  10. Z. Qian, S. Hou, J. Zhang, et al., Physica E: Low-Dimensional Syst. Nanostruct. 30, 81 (2005).

    Article  CAS  Google Scholar 

  11. Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe, ACS Nano 3, 621 (2009).

    Article  CAS  Google Scholar 

  12. M. T. Baei, A. Ahmadi Peyghan, and Z. Bagheri, Compt. Rend. Chim. 16, 302 (2013).

    Article  CAS  Google Scholar 

  13. R. Ma, Y. Bando, H. W. Zhu, et al., J. Am. Chem. Soc. 124, 7672 (2002).

    Article  CAS  Google Scholar 

  14. S. H. Lim and J. Lin, Chem. Phys. Lett. 466, 197 (2008).

    Article  CAS  Google Scholar 

  15. C. Liu, Y. Y. Fan, M. Liu, et al., Science 286, 1127 (1999).

    Article  CAS  Google Scholar 

  16. G.-X. Chen, Y. Zhang, D.-D. Wang, and J.-M. Zhang, J. Mol. Struct. (THEOCHEM) 956, 77 (2010).

    Article  CAS  Google Scholar 

  17. M. Schmidt, K. Baldridge, J. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  18. A. Soltani, M. Ramezani Taghartapeh, E. Tazikeh Lemeski, et al., Superlattices Microstruct. 58, 178 (2013).

    Article  CAS  Google Scholar 

  19. A. Soltani, N. Ahmadian, A. Amirazami, et al., Appl. Surf. Sci. 261, 262 (2012).

    Article  CAS  Google Scholar 

  20. A. Soltani, N. Ahmadian, Y. Kanani, et al., Appl. Surf. Sci. 258, 9536 (2012).

    Article  CAS  Google Scholar 

  21. A. Ahmadi Peyghan, M. T. Baei, M. Moghimi, and S. Hashemian, Comput. Theor. Chem. 997, 63 (2012).

    Article  Google Scholar 

  22. A. Ahmadi, N. L. Hadipour, M. Kamfiroozi, and Z. Bagheri, Sens. Actuators B: Chem. 161, 1025 (2012).

    Article  CAS  Google Scholar 

  23. S. S. Han, J. K. Kang, H. M. Lee, et al., J. Chem. Phys. 123, 114704 (2005).

    Article  Google Scholar 

  24. Q. Sun, P. Jena, Q. Wang, and M. Marquez, J. Am. Chem. Soc. 128, 9741 (2006).

    Article  CAS  Google Scholar 

  25. J. S. Arellano, L. M. Molina, A. Rubio, and J. A. Alonso, J. Chem. Phys. 112, 8114 (2000).

    Article  CAS  Google Scholar 

  26. Y. Okamoto and Y. Miyamoto, J. Phys. Chem. B 105, 3470 (2001).

    Article  CAS  Google Scholar 

  27. J. S. Arellano, L. M. Molina, A. Rubio, et al., J. Chem. Phys. 117, 2281 (2002).

    Article  CAS  Google Scholar 

  28. Z. Bagheri and A. Ahmadi Peyghan, Comput. Theor. Chem. 1008, 20 (2013).

  29. J. Beheshtian, H. Soleymanabadi, M. Kamfiroozi, and A. Ahmadi, J. Mol. Modeling 18, 2343 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Soltani.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baei, M.T., Lemeski, E.T. & Soltani, A. A density-functional theory of hydrogen adsorption on indium nitride nanotubes. Russ. J. Inorg. Chem. 62, 325–335 (2017). https://doi.org/10.1134/S0036023617030044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023617030044

Navigation