Skip to main content
Log in

Phase equilibria in the Nb2O5–CdO system and the thermal stability of Cd2Nb2O7 and CdNb2O6

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Phase equilibria were studied in the Nb2O5–CdO system in the Nb2O5-rich region including CdNb2O6 and Cd2Nb2O7. It was determined that CdNb2O6 and Cd2Nb2O7 in air are stable to 1150 and 1120°C, respectively, and that, above these temperatures, there is solid-phase decomposition of niobates with CdO release in the gas phase. Along with the cadmium oxide evaporation, the Cd2Nb2O7 decomposition is accompanied by the formation of cadmium metaniobate CdNb2O6 and the CdNb2O6 decomposition results in the formation of niobium oxide Nb2O5. No thermal events were observed in the differential thermal analysis curve for a 1: 1 CdNb2O6–Cd2Nb2O7 mixture heated to 1100°C in air, which suggests that there are neither phase transformations in cadmium niobates, nor a eutectic within this temperature and concentration ranges. A study of the morphology of compacted samples of niobates determined specific conditions for producing dense composite ceramics, a mixture of niobates, that is suitable for using as a dielectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Weiner and C. Wentworth, J. Am. Ceram. Soc. 35, 207 (1952).

    Article  Google Scholar 

  2. F. Jona, G. Shirane, and R. Pepinsky, Phys. Rev. 98, 903 (1955).

    Article  CAS  Google Scholar 

  3. V. A. Isupov, Phys. Sol. State 47, 2119 (2005).

    Article  CAS  Google Scholar 

  4. N. N. Kolpakova, R. Margraf, and M. Polomska, J. Phys.: Condens. Matter 6, 2787 (1994).

    CAS  Google Scholar 

  5. K. Lukaszewicz, A. Pietraszko, J. Stepien-Damm, and N. N. Kolpakova, Mater. Res. Bull., No. 29, 987 (1994).

    Article  CAS  Google Scholar 

  6. N. N. Kolpakova, M. Wiesner, A. O. Lebedev, et al., Tech. Phys. Lett. 24, 679 (1998).

    Article  CAS  Google Scholar 

  7. C. M. Ronconi and O. L. Alves, Thin Solid Films 441, 121 (2003).

    Article  CAS  Google Scholar 

  8. G. A. Samara, E. L. Venturini, and L. A. Boatner, J. Appl. Phys. 100, 074112 (2006).

    Article  Google Scholar 

  9. F. X. Zhang, J. Lian, U. Becker, et al., Phys. Rev. 74B, 174116 (2006).

    Article  Google Scholar 

  10. W. N. Lawless, Ferroelectrics 43, 223 (1982).

    Article  CAS  Google Scholar 

  11. C. Ang, R. Guo, A. S. Bhalla, and L. E. Gross, J. Appl. Phys. 87, 7452 (2000).

    Article  CAS  Google Scholar 

  12. C. Ang, A. S. Bhalla, R. Guo, and L. E. Gross, J. Appl. Phys. 90, 2465 (2001).

    Article  CAS  Google Scholar 

  13. N. N. Kolpakova, J. Exp. Theor. Phys. 96, 538 (2003).

    Article  CAS  Google Scholar 

  14. Zhi. Yu and C. Ang, Appl. Phys. Lett. 85 (587), 801 (2004).

    Article  CAS  Google Scholar 

  15. Y.-J. Hsiao, G.-C. Chang, and T.-H. Chang, J. Alloys Compd. 471, 259 (2009).

    Article  CAS  Google Scholar 

  16. Y.-J. Hsiao, T.-H. Fang, L.-W. Ji, and S.-S. Chi, Open Surf. Sci. J. 1, 30 (2009).

    Article  CAS  Google Scholar 

  17. M. K. Ekmekçi, M. Erdem, A. Mergen, et al., J. Alloys Compd. 591, 230 (2014).

    Article  Google Scholar 

  18. L. Reed, J. Am. Ceram. Soc. 44, 576 (1961).

    Article  CAS  Google Scholar 

  19. R. S. Roth, J. Am. Ceram. Soc. 44, 49 (1961).

    Article  CAS  Google Scholar 

  20. S. L. Swartz, C. A. Randall, and A. S. Bhalla, J. Am. Ceram. Soc. 72, 637 (1989).

    Article  CAS  Google Scholar 

  21. S. Waplak and N. N. Kolpakova, Phys. Status Solidi A 117, 461 (1990).

    Article  CAS  Google Scholar 

  22. A. de Bretteville, F. A. Halden, T. Valisos, and L. Reed, J. Am. Ceram. Soc. 40, 86 (1957).

    Article  Google Scholar 

  23. Yu. V. Karyakin and I. I. Angelov, Pure Chemical Reagents (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  24. W. R. Cook and H. Jaffe, Phys. Rev. 88, 1426 (1952).

    Article  CAS  Google Scholar 

  25. W. R. Cook and H. Jaffe, Phys. Rev. 89, 1297 (1953).

    Article  CAS  Google Scholar 

  26. B. H. Toby, J. Appl. Crystallogr. 34, 210 (2001).

    Article  CAS  Google Scholar 

  27. A. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS) Los Alamos National Laboratory Report LAUR 86 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Samigullina.

Additional information

Original Russian Text © R.F. Samigullina, M.V. Rotermel, I.V. Nikolaenko, T.I. Krasnenko, 2016, published in Zhurnal Neorganicheskoi Khimii, 2016, Vol. 61, No. 2, pp. 167–172.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samigullina, R.F., Rotermel, M.V., Nikolaenko, I.V. et al. Phase equilibria in the Nb2O5–CdO system and the thermal stability of Cd2Nb2O7 and CdNb2O6 . Russ. J. Inorg. Chem. 61, 156–160 (2016). https://doi.org/10.1134/S0036023616020182

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023616020182

Keywords

Navigation