Skip to main content
Log in

Theoretical study of the reactivity of Rh(I) and Rh(III) Bis(isonitrile) complexes in cycloaddition reactions with nitrones

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of 1,3-dipolar cycloaddition of nitrone (CH2=N(Me)O) to methylisonitrile coordinated to Rh(I) and Rh(III) in the [RhCl(PH3)(CNMe)2] and [RhCl3(PH3)(CNMe)2] complexes has been studied by quantum-chemical methods. The molecular and electronic structures of the cycloaddition products, the nature of transition states, the mechanism of reactions, their kinetic and thermodynamic parameters, and the solvent effect have been described. The reactions occur via the concerted strongly asynchronous mechanism involving the formation of a five-membered cyclic transition state. The use of rhodium complexes as reagents leads to a noticeable decrease in the activation barriers of the processes under consideration and an increase in the magnitudes of energy effects of the reactions. It has been demonstrated that the Rh(III) complexes are better activators of the cycloaddition of nitrone to isonitrile than the Rh(I) complex. The calculations predict that in the case of the Rh(I) complexes, only one isonitrile ligand can be involved in cycloaddition of nitrone, whereas the use of the Rh(III) complexes enables the participation of both ligands. The solvation effects inhibit the reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Bokach, Usp. Khim. 79, 104 (2010).

    Article  Google Scholar 

  2. N. A. Bokach and V. Yu. Kukushkin, Usp. Khim. 74, 164 (2005).

    Article  Google Scholar 

  3. V. Aucagne, J. Berna, J. D. Crowley, et al., J. Am. Chem. Soc. 129, 11950 (2007).

    Article  CAS  Google Scholar 

  4. S. Kezuka, Sh. Tanaka, T. Ohe, et al., Org. Chem. 71, 543 (2006).

    Article  CAS  Google Scholar 

  5. S. Kobayashi and K. A. Jùrgensen,, Cycloaddition Reactions in Organic Synthesis (Wiley-VCH, Weinheim, 2001).

    Book  Google Scholar 

  6. M. Frederickson, Tetrahedron 53, 403 (1997).

    Article  CAS  Google Scholar 

  7. J. A. Varela and C. Sa, Chem. Rev. 103, 3787 (2003).

    Article  CAS  Google Scholar 

  8. M. Lautens, W. Klute, and W. Tam, Chem. Rev. 96, 49 (1996).

    Article  CAS  Google Scholar 

  9. K. V. Gothelf and K. A. Jùrgensen,, Chem. Rev. 98, 863 (1998).

    Article  CAS  Google Scholar 

  10. C. J. Scheuermann and B. D. Ward, New J. Chem. 32, 1850 (2008).

    Article  CAS  Google Scholar 

  11. G. Broggini, G. Molteni, A. Terraneo, and G. Zecchi, Heterocycles 59, 823 (2003).

    Article  CAS  Google Scholar 

  12. M. L. Kuznetsov, Usp. Khim. 71, 307 (2002).

    Article  Google Scholar 

  13. M. L. Kuznetsov, Usp. Khim. 75, 1045 (2006).

    Google Scholar 

  14. K. V. Luzyanin and A. G. Tskhovrebov, M. F. C. Guedes da Silva, et al., Chem.-Eur. J. 15, 5969 (2009).

    Article  CAS  Google Scholar 

  15. F. M. C. Menezes, M. L. Kuznetsov, and A. J. L. Pombeiro, Organometallics 28, 6593 (2009).

    Article  CAS  Google Scholar 

  16. A. S. Novikov and M. L. Kuznetsov, Inorg. Chim. Acta 380, 78 (2012).

    Article  CAS  Google Scholar 

  17. G. Wagner, A. J. L. Pombeiro, and V. Yu. Kukushkin, J. Am. Chem. Soc. 122, 3106 (2000).

    Article  CAS  Google Scholar 

  18. G. Wagner and M. Haukka, J. J. R. Fraústo da Silva, et al., Inorg. Chem. 40, 264 (2001).

    Article  CAS  Google Scholar 

  19. M. L. Kuznetsov, V. Yu. Kukushkin, and A. J. L. Pombeiro, Org. Chem. 75, 1474 (2010).

    Article  CAS  Google Scholar 

  20. N. A. Bokach, M. L. Kuznetsov, M. Haukka, et al., Organometallics 28, 1406 (2009).

    Article  CAS  Google Scholar 

  21. M. L. Kuznetsov, V. Yu. Kukushkin, and A. J. L. Pombeiro, J. Chem. Soc., Dalton Trans., 1312 (2008).

    Google Scholar 

  22. M. L. Kuznetsov, A. A. Nazarov, L. V. Kozlova, and V. Yu. Kukushkin, Org. Chem. 72, 4475 (2007).

    Article  CAS  Google Scholar 

  23. M. L. Kuznetsov and V. Yu. Kukushkin, Org. Chem. 71, 582 (2006).

    Article  CAS  Google Scholar 

  24. M. L. Kuznetsov, V. Yu. Kukushkin, A. I. Dement’ev, and A. J. L. Pombeiro, J. Phys. Chem. A 107, 6108 (2003).

    Article  CAS  Google Scholar 

  25. A. S. Novikov, A. I. Dement’ev, and Yu. N. Medvedev, Russ. J. Inorg. Chem. 57, 1576 (2012).

    Article  CAS  Google Scholar 

  26. M. J. Frisch, et al., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford (CT), 2004.

    Google Scholar 

  27. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  28. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  29. M. Dolg, U. Wedig, H. Stoll, and H. Preuss, J. Chem. Phys. 86, 866 (1987).

    Article  CAS  Google Scholar 

  30. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971).

    Article  CAS  Google Scholar 

  31. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).

    Article  CAS  Google Scholar 

  32. M. M. Francl, W. J. Pietro, W. J. Hehre, et al., J. Chem. Phys. 77, 3654 (1982).

    Article  CAS  Google Scholar 

  33. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28, 213 (1973).

    Article  CAS  Google Scholar 

  34. C. Gonzalez and H. B. Schlegel, J. Chem. Phys. 95, 5853 (1991).

    Article  CAS  Google Scholar 

  35. K. B. Wiberg, Tetrahedron 24, 1083 (1968).

    Article  CAS  Google Scholar 

  36. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).

    Article  CAS  Google Scholar 

  37. A. Moyano, M. A. Pericàs, and E. Valentí, Org. Chem. 54, 573 (1989).

    Article  CAS  Google Scholar 

  38. B. Lecea, A. Arrieta, G. Roa, et al., J. Am. Chem. Soc. 116, 9613 (1994).

    Article  CAS  Google Scholar 

  39. F. P. Cossío, I. Morao, H. Jiao, and P. v. R. Schleyer, J. Am. Chem. Soc. 121, 6737 (1999).

    Article  Google Scholar 

  40. I. Morao, B. Lecea, and F. P. Cossío, Org. Chem. 62, 7033 (1997).

    Article  Google Scholar 

  41. S. Dapprich and G. Frenking, J. Phys. Chem. 99, 9352 (1995).

    Article  CAS  Google Scholar 

  42. S. Dapprich and G. Frenking, CDA 2.1, Marburg, 1995, available at ftp.chemie.uni-marburg.de/pub/cda.

    Google Scholar 

  43. J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994).

    Article  CAS  Google Scholar 

  44. V. Barone and M. Cossi, J. Phys. Chem. 102, 1995 (1998).

    Article  CAS  Google Scholar 

  45. R. Sustmann, Tetrahedron Lett., 2717 (1971).

    Google Scholar 

  46. R. Sustmann, Tetrahedron Lett., 2721 (1971).

    Google Scholar 

  47. G. Frenking and N. Fröhlich, Chem. Rev. 100, 717 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Novikov, A.I. Dement’ev, Yu.N. Medvedev, 2013, published in Zhurnal Neorganicheskoi Khimii, 2013, Vol. 58, No. 3, pp. 370–381.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikov, A.S., Dement’ev, A.I. & Medvedev, Y.N. Theoretical study of the reactivity of Rh(I) and Rh(III) Bis(isonitrile) complexes in cycloaddition reactions with nitrones. Russ. J. Inorg. Chem. 58, 320–330 (2013). https://doi.org/10.1134/S003602361303011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602361303011X

Keywords

Navigation