Skip to main content
Log in

A new theoretical approach to the thermodynamic calculation of high-temperature oxidation of Ni-Cr alloys

  • Published:
Protection of Metals Aims and scope Submit manuscript

Abstract

In calculations, not only the Gibbs formation energy of nickel and chromium oxides and thermodynamic activities of the alloy components, but also the Gibbs surface energy of a Ni-Cr alloy is taken into account. The method is based on the adsorption model of the alloy oxidation, according to which the adsorption of an alloy component with the smaller surface energy, namely, nickel, at the alloy-oxide film interface boundary shifts the dynamic equilibrium between the alloy and oxide-film components toward the formation of NiO. For the oxidation of Ni-Cr alloys, which are solid solutions with an fcc lattice, at 1123 to 1473 K, concentration boundaries of the chromium content in the alloy are calculated for the case of the prevailing formation of Cr2O3 oxide, which determines the high heat resistance of Ni-Cr alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mrovec, S. and Werber, T., Nowoczesne materialy zaroodporne Wydawnictwa naykowo-techniezne, Waszawa, 1982.

  2. Birks, N. and Meier, G.H., Introduction to High Temperature Oxidation of Metals, Edward Arnolg, 1983.

  3. Chemical Thermodynamics in Industry, Barry, T.T., Ed., Oxford, 1985.

  4. Kubashevski, O. and Alcock, C.B., Metallurgical Thermochemistry, London: Pergamon Press, 1968.

    Google Scholar 

  5. Wagner, C.J., J. Electrochem. Soc., 1952, vol. 99, p. 369; 1956, vol. 103, p. 627.

    CAS  Google Scholar 

  6. Chuang, Y.Y. and Chang, Y.A., Z. Metallkunde, 1986, vol. 77, p. 460.

    CAS  Google Scholar 

  7. Zhukhovitskii, A.A., Zh. Fiz. Khimii, 1944, vol. 18, no. 5–6, p. 214.

    CAS  Google Scholar 

  8. Andreev, Yu.Ya., Zh. Fiz. Khimii, 2002, vol. 76, no. 2, p. 338.

    CAS  Google Scholar 

  9. Andreev, Yu.Ya., Zh. Fiz. Khimii, 1998, vol. 72, no. 3, p. 529.

    CAS  Google Scholar 

  10. Andreev, Yu.Ya., Electrochim. Acta, 1998, vol. 43, p. 2627.

    Article  CAS  Google Scholar 

  11. Andreev, Yu.Ya., Zh. Fiz. Khimii, 2000, vol. 74, no. 5, p. 913.

    CAS  Google Scholar 

  12. Andreev, Yu.Ya. and Kutyrev, A.E., Zh. Fiz. Khimii, 2001, vol. 75, no. 4, p. 689.

    CAS  Google Scholar 

  13. Andreev, Yu.Ya., Materialovedenie, 2004, no. 9, p. 2.

  14. Andreev, Yu.Ya., Zh. Fiz. Khimii, 2005, vol. 79, no. 2, p. 239.

    Google Scholar 

  15. Bokshtein, B.S., Diffuziya v metallakh (Diffusion in Metals), Moscow: Metallurgiya, 1978.

    Google Scholar 

  16. Vitos, L., Ruban, A.V., and Skriver, H.L., Surf. Sci., 1998, vol. 411, p. 186.

    Article  CAS  Google Scholar 

  17. Wicks, C.E. and Block, F.E., Thermodynamic Properties of 65 Elements, Their Oxides, Halides, Carbides, and Nitrides, USA Department of the Interior, 1960.

  18. Croll, E. and Wallwork, G., Oxid. Met., 1969, vol. 1, p. 55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.Ya. Andreev, A.A. Shumkin, 2006, published in Zashchita Metallov, 2006, Vol. 42, No. 3, pp. 239–244.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, Y.Y., Shumkin, A.A. A new theoretical approach to the thermodynamic calculation of high-temperature oxidation of Ni-Cr alloys. Prot Met 42, 221–226 (2006). https://doi.org/10.1134/S0033173206030039

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0033173206030039

Keywords

Navigation