Skip to main content
Log in

Genetic Differentiation of Round Sardinella Sardinella aurita (Clupeidae) Populations from the Northeastern Mediterranean

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The genetic structure of round sardinella Sardinella aurita populations sampled from the eastern Mediterranean, Iskenderun, Mersin, and Antalya Bays, was examined through cytochrome oxidase subunit I (COI) sequencing of mtDNA. A total of 32 haplotypes was obtained from COI sequences, and the mean haplotype diversity was found to be 0.7917. The highest nucleotide diversity was observed in the Antalya population (0.0187), while the lowest was in the Mersin population (0.0093). The highest genetic divergence was detected between Iskenderun and Antalya populations (0.0168), whereas the lowest was between Iskenderun and Mersin populations (0.0119). Pairwise comparisons of genetic distance showed that the Iskenderun population statistically differed from the other populations (p < 0.05). The Neighbor–Joining tree revealed that the Mersin and Antalya populations were grouped as the nearest, while the Iskenderun population differed far from these populations. The present investigation revealed the first information on the genetic structure of S. aurita, which may be useful for the perspective of fisheries management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Avise, J.C., Arnold, J., Ball, R.M., et al., Intraspecific phylogeography—the mitochondrial DNA bridge between population genetics and systematics, Annu. Rev. Ecol. Evol. Syst., 1987, vol. 18, pp. 489–522. https://doi.org/10.1146/annurev.es.18.110187.002421

    Article  Google Scholar 

  2. Bandelt, H., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  3. Bianchi, G., Carpenter, K.E., Roux, J.P., et al., FAO Species Identification Guide for Fishery Purposes. Field Guide to the Living Marine Resources of Namibia, Rome: FAO, 1999.

    Google Scholar 

  4. Chiazzari, B., Population connectivity of sardines (Sardinops sagax) of the KZN sardine run using meristic, morphological and genetic data, MS Thesis, University of KwaZulu-Natal, 2014.

  5. Elias, D.J., McMahan, C.D., and Piller, K.R., Molecular data elucidate cryptic diversity within the widespread Threadfin Shad (Dorosoma petenense: Clupeidae) across the Nearctic and Northern Neotropics, Hydrobiologia, 2022, vol. 849, no. 1, pp. 89–111. https://doi.org/10.1007/s10750-021-04713-8

    Article  Google Scholar 

  6. Erguden, D., Gurlek, M., Yaglioglu, D., and Turan, C., Genetic identification and taxonomic relationship of Mediterranean mugilid species based on mitochondrial 16S rDNA sequence data, J. Anim. Vet. Adv., 2010, vol. 9, no. 2, pp. 336–341.

    Article  CAS  Google Scholar 

  7. Froese, R. and Pauly, D., FishBase, Version 10/2022. www.fishbase.org.

  8. Galtier, N., Nabholz, B., Glemin, S., and Hurst, G.D.D., Mitochondrial DNA as a marker of molecular diversity: A reappraisal, Mol. Ecol., 2009, vol. 18, pp. 4541–4550. https://doi.org/10.1111/j.1365-294X.2009.04380.x

    Article  CAS  PubMed  Google Scholar 

  9. Hall, T.A., BioEdit: A User-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  10. Harrison, R.G., Animal mitochondrial DNA as a genetic marker in population and evolutionary biology, Trends Ecol. Evol., 1989, vol. 4, no. 1, pp. 6–11. https://doi.org/10.1016/0169-5347(89)90006-2

    Article  CAS  PubMed  Google Scholar 

  11. Hunnam, K., The biology and ecology of tropical marine sardines and herrings in Indo-West Pacific fisheries: A review, Rev. Fish Biol. Fish., 2021, vol. 31, no. 3, pp. 449–484. https://doi.org/10.1007/s11160-021-09649-9

    Article  Google Scholar 

  12. Hurst, G.D. and Jiggins, F.M., Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts, Proc. R. Soc. Lond. B. Biol. Sci., 2005, vol. 272, no. 1572, pp. 1525–1534. https://doi.org/10.1098/rspb.2005.3056

    Article  CAS  Google Scholar 

  13. Jaafar, T.N.A.M., Shariffuddin, N., Abdullah, S., et al., Cytochrome oxidase i gene reveals potential cryptic diversity of doublewhip threadfin bream, Nemipterus nematophorus (Bleeker, 1854) in Peninsular Malaysia, J. Sustain. Sci. Manag., 2020, vol. 15, no. 4, pp. 34–44. https://doi.org/10.46754/jssm.2020.06.004

    Article  CAS  Google Scholar 

  14. Labrador, K., Agmata, A., Palermo, J.D., et al., Mitochondrial DNA reveals genetically structured haplogroups of Bali sardinella (Sardinella lemuru) in Philippine waters, Reg. Stud. Mar. Sci., 2021, vol. 41, Article 101588. https://doi.org/10.1016/j.rsma.2020.101588

    Article  Google Scholar 

  15. Liu, B., Zhang, K., Zhu, K., et al., Population genetics of Konosirus punctatus in Chinese coastal waters inferred from two mtDNA genes (COI and Cytb), Front. Mar. Sci., 2020, vol. 7, Article 534. https://doi.org/10.3389/fmars.2020.00534

    Article  Google Scholar 

  16. Lleonart, J. and Maynou, F., Fish stock assessments in the Mediterranean: State of the art, Sci. Mar., 2003, vol. 67, no. S1, pp. 37–49.

    Article  Google Scholar 

  17. Lynch, A.J., McDowell, J.E., and Graves, J., A molecular genetic investigation of the population structure of Atlantic Menhaden (Brevoortia tyrannus), Fish. Bull., 2010, vol. 108, no. 1, pp. 87–97.

    Google Scholar 

  18. Morote, E., Olivar, M.P., Villate, F., and Uriarte, I., Diet of round sardinella, Sardinella aurita, larvae in relation to plankton availability in the NW Mediterranean, J. Plankton Res., 2008, vol. 30, no. 7, pp. 807–816. https://doi.org/10.1093/plankt/fbn039

    Article  Google Scholar 

  19. Myoung, S.H. and Kim, J.K., Genetic diversity and population structure of the gizzard shad, Konosirus punctatus (Clupeidae, Pisces), in Korean waters based on mitochondrial DNA control region sequences, Genes Genom., 2014, vol. 36, no. 5, pp. 591–598. https://doi.org/10.1007/s13258-014-0197-6

    Article  Google Scholar 

  20. Palsbøll, P.J., Berube, M., and Allendorf, F.W., Identification of management units using population genetic data, Trends Ecol. Evol., 2007, vol. 22, no. 1, pp. 11–16. https://doi.org/10.1016/j.tree.2006.09.003

    Article  PubMed  Google Scholar 

  21. Palumbi, S.R., Genetic divergence, reproductive isolation, and marine speciation, Annu. Rev. Ecol. Syst., 1994, vol. 25, no. 1, pp. 547–572. https://doi.org/10.1146/annurev.es.25.110194.002555

    Article  Google Scholar 

  22. Posada, D. and Crandall, K.A., ModelTest: Testing the model of DNA substitution, Bioinformatics, 1998, vol. 14, pp. 817–818. https://doi.org/10.1093/bioinformatics/14.9.817

    Article  CAS  PubMed  Google Scholar 

  23. Preciado, I., Velasco, F., and Olaso, I., The role of pelagic fish as forage for the demersal fish community in the southern Bay of Biscay, J. Mar. Syst., 2008, vol. 72, no. 1–4, pp. 407–417. https://doi.org/10.1016/j.jmarsys.2007.04.007

    Article  Google Scholar 

  24. Saitou, N. and Nei, M, The Neighbor-Joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, no. 4, pp. 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  25. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual Second Edition, New York: Spring Harbor Press, 1989.

    Google Scholar 

  26. Seyhan, D. and Turan, C., DNA barcoding of Scombrid species in the Turkish marine waters, J. Black Sea/Medit. Environ., 2016, vol. 22, pp. 35–45.

    Google Scholar 

  27. Stern, N., Douek, J., Goren, M., and Rinkevich, B., With no gap to mind: A shallow genealogy within the world’s most widespread small pelagic fish, Ecography, 2018, vol. 41, no. 3, pp. 491–504. https://doi.org/10.1111/ecog.02755

    Article  Google Scholar 

  28. Sukumaran, S., Sebastian, W., and Gopalakrishnan, A., Population genetic structure of Indian oil sardine, Sardinella longiceps along Indian coast, Gene, 2016, vol. 576, no. 1, pp. 372–378. https://doi.org/10.1016/j.gene.2015.10.043

    Article  CAS  PubMed  Google Scholar 

  29. Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tarmizi, N.N.B.A, Genetic structure of longtail shad [Tenualosa macrura (Bleeker, 1852)] populations in Sarawak and phylogenetic relationships among clupeids, MS Thesis, University Putra Malaysia, 2018.

  31. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucl. Acids Res., 1994, vol. 22, pp. 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turan, C., Gurlek, M., Yaglioglu, D., and Ozturk, B., Genetic differentiation of Mediterranean horse mackerel (Trachurus mediterraneus) populations as revealed by mtDNA PCR-RFLP analysis, J. Appl. Ichthyol., 2009a, vol. 25, no. 2, pp. 142–147. https://doi.org/10.1111/j.1439-0426.2009.01223.x

    Article  CAS  Google Scholar 

  33. Turan, C., Ozturk, B., Caliskan, M., et al., Genetic variation of Atlantic horse mackerel (Trachurus trachurus) in the Turkish waters, Cah. Biol. Mar., 2009b, vol. 50, no. 3, pp. 207–213.

    Google Scholar 

  34. Turan, C., Erguden, D., Gurlek, M., et al., Molecular systematic analysis of shad species (Alosa spp.) from Turkish marine waters using mtDNA genes, Turkish J. Fish. Aquat. Sci., 2015a, vol. 15, pp. 149–155. https://doi.org/10.4194/1303-2712-v15_1_16

    Article  Google Scholar 

  35. Turan, C., Gurlek, M., Erguden, D., et al., Population genetic analysis of Atlantic bonito Sarda sarda (Bloch, 1793) using sequence analysis of mtDNA D-loop region, Fresenius Environ. Bull., 2015b, vol. 24, no. 10, pp. 3148–3154.

    CAS  Google Scholar 

  36. Verma, R., Singh, M., and Kumar, S., Unraveling the limits of mitochondrial control region to estimate the fine scale population genetic differentiation in anadromous fish Tenualosa ilisha, Scientifica, 2016, vol. 2016, pp. 1–9. https://doi.org/10.1155/2016/2035240

    Article  CAS  Google Scholar 

  37. Ward, R.D., Zemlak, T.S., Innes, B.H., et al., DNA barcoding Australia’s fish species, Philos. Trans. R. Soc. Lond., B, Biol. Sci., 2005, vol. 360, no. 1462, pp. 1847–1857. https://doi.org/10.1098/rstb.2005.1716

    Article  CAS  PubMed  Google Scholar 

  38. Xu, H., Zhang, Y., Xu, D., et al., Genetic population structure of Miiuy croaker (Miichthys miiuy) in the Yellow and East China Seas base on mitochondrial COI sequences, Biochem. Syst. Ecol., 2014, vol. 54, pp. 240–246. https://doi.org/10.1016/j.bse.2014.01.013

    Article  CAS  Google Scholar 

  39. Yagishita, N., Kumashiro, M., Matsumoto, M., and Yamano, H., Genetic population structure of Japanese sardinella Sardinella zunasi around Japan, Fish. Sci., 2021, vol. 87, no. 6, pp. 805–816. https://doi.org/10.1007/s12562-021-01554-1

    Article  CAS  Google Scholar 

  40. Zgozi, S., Barra, M., Basilone, G., et al., Habitat suitability modelling for a key small pelagic fish species (Sardinella aurita) in the central Mediterranean Sea, Hydrobiologia, 2018, vol. 821, no. 1, pp. 83–98. https://doi.org/10.1007/s10750-017-3265-5

    Article  Google Scholar 

Download references

Funding

This study was funded by the Republic of Türkiye Ministry of Food, Agriculture and Livestock General Directorate of Agricultural Research and Policies (TAGEM-16/ARGE/21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Uyan.

Ethics declarations

Conflict of interests. The authors state no conflict of interest with respect to the research, authorship, and/or publication of this article.

Statement on the welfare of humans or animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan, C., Uyan, A., Atalay, M.A. et al. Genetic Differentiation of Round Sardinella Sardinella aurita (Clupeidae) Populations from the Northeastern Mediterranean. J. Ichthyol. 63, 962–968 (2023). https://doi.org/10.1134/S0032945223050119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945223050119

Keywords:

Navigation