Skip to main content
Log in

Development of Single Nucleotide Polymorphism Markers for the Autotetraploid Scaphirhynchus Sturgeons (Acipenseriformes)

  • STURGEONS (ACIPENSERIDAE)
  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

North American river sturgeons of the genus Scaphirhynchus include three species: S. platorynchus, S. albus and S. suttkusi that live in the Missouri, Mississippi, and Mobile basin. All species of Scaphirhynchus are threatened, endangered or critically endangered due to a combination of factors including of habitat loss and over-harvesting. Genetic tools have been applied for conservation studies in this group, however, the tetrapolyploid nature of the genome of these species have brought a huge challenge to development of nuclear markers for these species and limited knowledge that could be obtained, such as the phylogenetic intrarelationships and population genetics of this genus. Moreover, unintentional hybridization arose from two species of Scaphirhynchus (S. platorynchus and S. albus) that share the same spawning space. To address the problem of species identification and provide genetic markers for population genetic studies on Scaphirhynchus, we developed a bioinformatics pipeline to find SNP markers, based on comparison between single-copy loci of diploid gar and two released autotetraploid genomes of Acipenseriformes. We found 77 SNPs at single-copy loci and 642 SNPs at double-copy loci after filtering. Both the single-copy and double-copy loci supported the same phylogenetic relationship among the three species, in which S. albus and S. platorynchus were more closely related to each other than either of them to S. suttkusi. The principal component analysis using these SNPs also showed that S. albus and S. platorynchus were close to each other. The SNP markers developed in this study should facilitate further researches on population genetics and conservation of the Scaphirhynchus sturgeons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Birstein, V.J. and Bemis, W.E., How many species are there within the genus Acipenser?, Environ. Biol. Fishes, 1997, vol. 48, no. 1−4, pp. 157−163. https://doi.org/10.1023/A:1007354827093

    Article  Google Scholar 

  2. Birstein, V.J., Desalle, R., Doukakis, P., et al., Testing taxonomic boundaries and the limit of DNA barcoding in the Siberian sturgeon, Acipenser baerii, Mitochondrial DNA, 2009, vol. 20, no. 5−6, pp. 110−118. https://doi.org/10.3109/19401730903168182

    Article  CAS  Google Scholar 

  3. Chassaing O., Hänni C., and Berrebi P., Distinguishing species of European sturgeons Acipenser spp. using microsatellite allele sequences, J. Fish Biol., 2011, vol. 78, no. 1, pp. 208−226. https://doi.org/10.1111/j.1095-8649.2010.02852.x

    Article  CAS  Google Scholar 

  4. Cheng, P.L., Huang, Y., Lv, Y.Y., et al., The American Paddlefish Genome Provides Novel lnsignts into Chromosomal Evolution and Bone Mineralization in Early Vertebrates, Mol. Biol. Evol., 2021, vol. 38, no. 4, pp. 1595−1607. https://doi.org/10.1093/molbev/msaa326

    Article  CAS  Google Scholar 

  5. Comincini, S., Lanfredi, M., Rossi, R., and Fontana, F., Use of RAPD markers to determine the genetic relationships among sturgeons (Acipenseridae, Pisces), Fish. Sci., 1998, vol. 64, no. 1, pp. 35−38. https://doi.org/10.2331/fishsci.64.35

    Article  CAS  Google Scholar 

  6. Du, K., Stock, M., Kneitz, S., et al., The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization, Nat. Ecol. Evol., 2020, vol. 4, no. 6, pp. 841−852. https://doi.org/10.1038/s41559-020-1166-x

    Article  Google Scholar 

  7. Eichelberger, J.S., Braaten, P.J., Fuller, D.B., et al., Novel Single-Nucleotide Polymorphism Markers Confirm Successful Spawning of Endangered Pallid Sturgeon in the Upper Missouri River Basin, Trans. Am. Fish. Soc., 2014, vol. 143, no. 6, pp. 1373−1385. https://doi.org/10.1080/00028487.2014.935479

    Article  CAS  Google Scholar 

  8. Haxton, T.J., Sulak, K., and Hildebrand, L., Status of scientific knowledge of North American sturgeon, J. Appl. Ichthyol., 2016, vol. 32, pp. 5−10. https://doi.org/10.1111/jai.13235

    Article  Google Scholar 

  9. Janosik, A.M., Whitaker, J.M., VanTassel, N.M., and Rider, S.J., Improved environmental DNA sampling scheme for Alabama sturgeon provides new insight into a species once presumed extinct, J. Appl. Ichthyol., 2021, vol. 37, no. 2, pp. 178−185. https://doi.org/10.1111/jai.14183

    Article  CAS  Google Scholar 

  10. Jiang, J., Yuan, H., Zheng, X., et al., Gene markers for exon capture and phylogenomics in ray-finned fishes, Ecol Evol., 2019, vol. 9, no. 7, pp. 3973–3983. https://doi.org/10.1002/ece3.5026

    Article  Google Scholar 

  11. Katoh, K., Misawa, K., Kuma, K., and Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res., 2002, vol. 30, no. 14, pp. 3059−3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  Google Scholar 

  12. Khlestkina, E. K., and Salina, E. A., SNP markers: Methods of analysis, ways of development, and comparison on an example of common wheat, Russ. J. Genet., 2006, vol. 42, no. 6, pp. 585−594. https://doi.org/10.1134/S1022795406060019

    Article  CAS  Google Scholar 

  13. Knaus, B. J., and Grünwald, N. J., VCFR: a package to manipulate and visualize variant call format data in R, Mol. Ecol. Res., 2017, vol. 17, no. 1, pp. 44−53. https://doi.org/10.1111/1755-0998.12549

    Article  CAS  Google Scholar 

  14. Krieger, J., Fuerst, P. A. and Cavender, T. M., Phylogenetic relationships of the North American sturgeons (order Acipenseriformes) based on mitochondrial DNA sequences, Mol. Phylogenet. Evol., 2000, vol. 16, no. 1, pp. 64–72. https://doi.org/10.1006/mpev.1999.0743

    Article  CAS  Google Scholar 

  15. Krieger, J., Hett, A.K., Fuerst, P.A., et al., The molecular phylogeny of the order Acipenseriformes revisited, J. Appl. Ichthyol., 2008, vol. 24, no. s1, pp. 36−45. https://doi.org/10.1111/j.1439-0426.2008.01088.x

    Article  Google Scholar 

  16. Li, H., Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, arXiv pre-print server, 2013. https://doi.org/10.48550/arXiv.1303.3997

  17. Li, C. H., Orti, G., Zhang, G., and Lu, G.Q.,A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study, BMC Evol. Biol., 2007, vol. 7, Article 44. https://doi.org/10.1186/1471-2148-7-44

    Article  CAS  Google Scholar 

  18. Li, C.H., Riethoven, J.J.M., and Naylor, G.J.P., EvolMarkers: a database for mining exon and intron markers for evolution, ecology and conservation studies, Mol. Ecol. Res., 2012, vol. 12, no. 5, pp. 967−971. https://doi.org/10.1111/j.1755-0998.2012.03167.x

    Article  CAS  Google Scholar 

  19. Li, Z., De La Torre, A. R., Sterck, L., et al., Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants, Genome Biol. Evol., 2017, vol. 9, no. 5, pp. 1130−1147. https://doi.org/10.1093/gbe/evx070

    Article  CAS  Google Scholar 

  20. Liu, Y., Chen, Y.Y., Gong, Q., et al., Paternity assignment in the polyploid Acipenser dabryanus based on a novel microsatellite marker system, PLoS One, 2017, vol. 12, no. 9, Article e0185280. https://doi.org/10.1371/journal.pone.0185280

    Article  CAS  Google Scholar 

  21. Ludwig, A., Identification of Acipenseriformes species in trade, J. Appl. Ichthyol., 2008, vol. 24, pp. 2−19. https://doi.org/10.1111/j.1439-0426.2008.01085.x

    Article  Google Scholar 

  22. Ludwig, A., Belfiore, N.M., Pitra, C., et al., Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus), Genetics, 2001, vol. 158, no. 3, pp. 1203−1215. https://doi.org/10.1093/genetics/158.3.1203

    Article  CAS  Google Scholar 

  23. Luo, D.H., Li, Y.P., Zhao, Q.Y., et al., Highly resolved phylogenetic relationships within order acipenseriformes according to novel nuclear markers, Genes, 2019, vol. 10, no. 1, Article 38. https://doi.org/10.3390/genes10010038

    Article  CAS  Google Scholar 

  24. McQuown, E.C., Sloss, B.L., Sheehan, R.J., et al., Microsatellite analysis of genetic variation in sturgeon: New primer sequences for Scaphirhynchus and Acipenser, Trans. Am. Fish. Soc., 2000, vol. 129, pp. 1380–1388. https://doi.org/10.1577/1548-8659(2000)129<1380:MAOGVI>2.0.CO;2

    Article  CAS  Google Scholar 

  25. Murphy, C.E., Hoover, J.J., George, S.G., and Killgore, K.J., Morphometric variation among river sturgeons (Scaphirhynchus spp.) of the Middle and Lower Mississippi River, J. Appl. Ichthyol., 2007, vol. 23, no. 4, pp. 313−323. https://doi.org/10.1111/j.1439-0426.2007.00883.x

    Article  Google Scholar 

  26. Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B., Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies, Mol. Biol. Evol., 2015, vol. 32, no. 1, pp. 268−274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  Google Scholar 

  27. Rothfels, C.J., Larsson, A., Li, F.W., et al., Transcriptome-mining for single-copy nuclear markers in ferns, PLoS One, 2013, vol. 8, no. 10, Article e76957. https://doi.org/10.1371/journal.pone.0076957

    Article  CAS  Google Scholar 

  28. Schrey, A.W. and Heist, E.J. Stock structure of pallid sturgeon analyzed with microsatellite loci, J. Appl. Ichthyol., 2007, vol. 23, no. 4, pp. 297−303. https://doi.org/10.1111/j.1439-0426.2007.00881.x

    Article  Google Scholar 

  29. Schrey, A.W., Boley, R., and Heist, E.J., Hybridization between pallid sturgeon Scaphirhynchus albus and shovelnose sturgeon Scaphirhynchus platorynchus, J. Fish Biol., 2011, vol. 79, no. 7, pp. 1828−1850. https://doi.org/10.1111/j.1095-8649.2011.03123.x

    Article  CAS  Google Scholar 

  30. Shen, W., Le, S., Li, Y., and Hu, F.Q., SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation, PLoS One, 2016, vol. 11, no. 10, Article e0163962. https://doi.org/10.1371/journal.pone.0163962

    Article  CAS  Google Scholar 

  31. Shen, Y., Yang, N., Liu, Z. et al., Phylogenetic perspective on the relationships and evolutionary history of the Acipenseriformes, Genomics, 2020, vol. 112, no. 5, pp. 3511−3517. https://doi.org/10.1016/j.ygeno.2020.02.017

    Article  CAS  Google Scholar 

  32. Sheraliev, B. and Peng, Z.G., Complete mitochondrial genome sequence and phylogenetic position of the Amu Darya sturgeon, Pseudoscaphirhynchus kaufmanni (Acipenseriformes: Acipenseridae), J. Appl. Ichthyol., 2020, vol. 36, no. 4, pp. 389−392. https://doi.org/10.1111/jai.14043

    Article  CAS  Google Scholar 

  33. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J. M., and Birol, I. ABySS: A parallel assembler for short read sequence data, Genome Res., 2009, vol. 19, no. 6, pp. 1117–1123. https://doi.org/10.1101/gr.089532.108

    Article  CAS  Google Scholar 

  34. Van De Peer, Y., Mizrachi, E., and Marchal, K., The evolutionary significance of polyploidy, Nat. Rev. Genet., 2017, vol. 18, no. 7, pp. 411−424. https://doi.org/10.1038/nrg.2017.26

    Article  CAS  Google Scholar 

  35. Yuan, H., Jiang, J.M., Jimenez, F.A., et al., Target gene enrichment in the cyclophyllidean cestodes, the most diverse group of tapeworms, Mol. Ecol. Resour., 2016, vol. 16, no. 5, pp. 1095−1106. https://doi.org/10.1111/1755-0998.12532

    Article  CAS  Google Scholar 

  36. Zeng, L.P., Zhang, N., Zhang, Q.A., et al., Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets, New Phytol., 2017, vol. 214, no. 3, pp. 1338−1354. https://doi.org/10.1111/nph.14503

    Article  CAS  Google Scholar 

  37. Zhang, H., Jarić, I., Roberts, D.L., et al., Extinction of one of the world’s largest freshwater fishes: Lessons for conserving the endangered Yangtze fauna, Sci. Total Environ., 2020, vol. 710, Article 136242. https://doi.org/10.1016/j.scitotenv.2019.136242

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.J. Hilton, Virginia Institute of Marine Science, Gloucester Point, VA, USA, R.M. Wood, Saint Louis University, St. Louis, MO, USA, B.R. Kuhajda, University of Alabama, Tuscaloosa, AL, USA and R.L. Mayden, Saint Louis University, St. Louis, MO, USA for tissues of Scaphirhynchus. We thank the anonymous reviewers for their constructive suggestions.

Funding

This work was supported by the Science and Technology Commission of Shanghai Municipality (19050501900). C.B. Dillman was supported by U.S. National Science Foundation (DEB-0841691).

Author information

Authors and Affiliations

Authors

Contributions

C. Li and T. Zhou conceived the research. T. Zhou and J. Huang performed experiment and carried the analysis. T. Zhou, J. Huang, C.B. Dillman, Y. He, and C. Li drafted the manuscript. All authors have edited and approved the final version of the manuscript.

Corresponding author

Correspondence to C. Li.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. The animal study was reviewed and approved by the Animal Ethics Committee of Shanghai Ocean University, China (no. 22, Aug. 2014).

Additional information

Supplementary Information

Custom scripts used for generating the results are available at GitHub (https://github.com/TaoZhou2021/ SNP_marker). Supplementary file of sequences of conserved loci (fasta) and filtered SNPs (vcf) were available by searching the https://data.mendeley.com/datasets/77z94jv27v/2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Huang, J., Dillman, C.B. et al. Development of Single Nucleotide Polymorphism Markers for the Autotetraploid Scaphirhynchus Sturgeons (Acipenseriformes). J. Ichthyol. 62, 1419–1429 (2022). https://doi.org/10.1134/S0032945222060340

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945222060340

Keywords:

Navigation