Skip to main content
Log in

Can the Ovum Genome of Tetraploid Sturgeon Species (Acipenseridae) Exhibit the Functional Properties of a Diploid Genome?

  • STURGEONS (ACIPENSERIDAE)
  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Viable prelarvae were obtained for the first time as a result of insemination of eggs of the kaluga Acipenser dauricus with UV-inactivated sperm of the sterlet A. ruthenus. These normally developed prelarvae without any signs of the haploid syndrome carried two maternal alleles at each examined microsatellite locus; they did not have sterlet paternal alleles. The viability of haploid gynogenetic prelarvae is explained by the low level of diploidization of the kaluga genome, which is confirmed by the presence of multivalent configurations (mainly quadrivalents) in prophase I of meiosis in kaluga (with ~260 chromosomes). The results correspond to the extremely low rate of molecular and chromosomal evolution noted for all sturgeons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Andreyushkova, D.A., Makunin, A.I., Beklemisheva, V.R. et al., Next generation sequencing of chromosome−specific libraries sheds light on genome evolution in paleotetraploid sterlet (Acipenser ruthenus), Genes, 2017, vol. 8, no. 11, pp. 1–12. https://doi.org/10.3390/genes8110318

    Article  CAS  Google Scholar 

  2. Arai, K., Matsubara, K., and Suzuki, R., Chromosomes and developmental potential of progeny of spontaneous tetraploid loach Misgurnus anguillicaudatus, Nipp. Suisan Gakkaishi, 1991, vol. 57, no. 12, pp. 2173–2178. https://doi.org/10.2331/suisan.57.2173

    Article  Google Scholar 

  3. Arai, K., Matsubara, K., and Suzuki, R., Production of polyploids and viable gynogens using spontaneously occurring tetraploid loach, Misgurnus anguillicaudatus, Aquaculture, 1993, vol. 117, no. 3–4, pp. 227–235. https://doi.org/10.1016/0044?8486(93)90322?P

    Article  Google Scholar 

  4. Arefjev, V.A., Polykaryogrammic analysis of the ship Acipenser nudiventris Lovetsky (Acipenseridae, Chondrostei), J. Ichthyol., 1983, vol. 23, pp. 26–35.

    Google Scholar 

  5. Badrtdinov, O.A., Kovalev, K.V., Lebedeva, E.B., et al., Entirely male gynogenetic offspring of Acipenser stellatus (Pisces, Acipenseridae), Dokl. Biol. Sci., 2008, vol. 423, no. 1, pp. 392–394.  https://doi.org/10.1134/s0012496608060070

    Article  CAS  Google Scholar 

  6. Barmintseva, A.E. and Mugue, N.S., The use of microsatellite loci for identification of sturgeon species (Acipenseridae) and hybrid forms, Russ. J. Genet., 2013, vol. 49, no. 9, pp. 950–961. https://doi.org/10.1134/S1022795413090032

    Article  CAS  Google Scholar 

  7. Bemis, W.E., Findeis, E.K., and Grande, L., An overview of Acipenseriformes, Environm. Biol. Fish., 1997, vol. 48, pp. 25–71.

    Article  Google Scholar 

  8. Berrebi, P., Cattaneo-Berrebi, G., and Le Brun, N., Natural hybridization of two species of tetraploid barbels: Barbus meridionalis and Barbus barbus (Osteichthyes, Cyprinidae) in southern France, Biol. J. Linn. Soc., 1993, vol. 48, pp. 319–333.

    Article  Google Scholar 

  9. Cherfas, N.B., Rothbard, S., Hulata G., and Kozinsky, O., Spontaneous diploidization of maternal chromosome set in ornamental (koi) carp, Cyprinus carpio L., J. Appl. Ichthyol., 1991, vol. 7, pp. 72–77.

    Article  Google Scholar 

  10. Cherfas, N.B., Gomelsky, B., Ben-Dom, M.N., and Hulata, G., Evidence for the heritable nature of spontaneous diploidization in common carp, Cyprinus carpio L., eggs, Aquacult. Res., 1995, vol. 26, pp. 289–292.

    Article  Google Scholar 

  11. Chourrout, D., Gynogenesis caused by ultraviolet irradiation of salmonid sperm, J. Exp. Zool., 1982, vol. 223, pp. 175–181.

    Article  CAS  Google Scholar 

  12. Chourrout, D., Chevassus, B., and Herioux, F., Analysis of an Hertwig effect in the rainbow trout (Salmo gairdneri Richardson) after fertilization with y-irradiated sperm, Reprod. Nutr. Devel., 1980, vol. 20, pp. 719–726.

    Article  CAS  Google Scholar 

  13. De la Herrán, R., Fontana, F., Lanfredi, M., et al., Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons, Mol. Biol. Evol., 2001, vol. 18, no. 1, pp. 432–436. https://doi.org/10.1093/oxfordjournals.molbev.a003820

    Article  Google Scholar 

  14. Dingerkus, G. and Howell, W.M., Karyotypic analysis and evidence of tetraploidy in the North American paddlefish, Polyodon spathula, Science, 1976, vol. 194, no. 4267, pp. 842–844.

    Article  CAS  Google Scholar 

  15. Du, K., Stöck, M.,  Kneitz, S., et al., The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization, Nat. Ecol. Evol., 2020, vol. 4, pp. 841–852. https://doi.org/10.1038/s41559?020?1166?xoi.org/10.1038/s41559?020?1166?x

    Article  Google Scholar 

  16. Flajšhans, M., Kvasnicka, P., and Ráb, P., Genetic studies in tench (Tinca tinca L.): high incidence of spontaneous triploidy, Aquaculture, 1993, vol. 110, pp. 243–248. https://doi.org/10.1016/0044?8486(93)90372?6

    Article  Google Scholar 

  17. Fontana, F., Tagliavini, J., and Congiu, L., Sturgeon genetics and cytogenetics: recent advancements and perspectives, Genetica, 2001, vol. 111, pp. 359–373.

    Article  CAS  Google Scholar 

  18. Fontana, F., Congiu, L., Mudrak, V.A., Quattro, J.M., et al., Evidence of hexaploid karyotype in shortnose sturgeon, Genome, 2008, vol. 51, no. 2, pp. 113–119.https://doi.org/10.1139/g07?112

    Article  CAS  Google Scholar 

  19. Fopp-Bayat, D., Spontaneous gynogenesis in Siberian sturgeon Acipenser baeri Brandt, Aquacult. Res., 2007, vol. 38, pp. 776–779. https://doi.org/10.1111/j.1365?2109.2007.01739.x

    Article  Google Scholar 

  20. Fopp-Bayat, D. and Woznicki, P., Spontaneous and induced gynogenesis in sterlet Acipenser ruthenus Brandt, Caryologia, 2007, vol. 60, no. 4, pp. 315–318. https://doi.org/10.1080/00087114.2007.10797953

    Article  Google Scholar 

  21. Gardiner, B.G., Sturgeons as living fossils, in Living Fossils, Eldredge, N. and Stanley, S.M., Eds., New York: Springer Verlag, 1984, pp. 148–152.

    Google Scholar 

  22. Havelka, M., Hulák, M., and Bailie, D.A., Extensive genome duplications in sturgeons: new evidence from microsatellite data, J. Appl. Ichthyol., 2013, vol. 29, pp. 704–708. https://doi.org/10.1111/jai.12224

    Article  Google Scholar 

  23. Havelka, M., Bytyutskyy, D., Symonovẚ, R., et al., The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity, Gen. Sel. Evol., 2016, vol. 48, no. 1, pp. 1–9.https://doi.org/10.1186/s12711?016?0194?0

    Article  Google Scholar 

  24. Hilton, E.J., Kovalchuk, O., Podoplelova, N., Sturgeon (Acipenseridae) from the Late Miocene of Ukraine, with a discussion of materials associated with Widhalm’s (1886) nomen nudum, Acipenser euhuso, Zootaxa, 2021, vol. 5057, no. 3, pp. 85–101. https://doi.org/10.11646/zootaxa.5057.3.4

    Article  Google Scholar 

  25. Ivanova, N.V. and Hebert, P.D.N., An inexpensive, automation friendly protocol for recovering high quality DNA, Mol. Ecol. Notes, 2006, vol. 6, pp. 998–1002.https://doi.org/10.1111/j.1471?8286.2006.01428.x

    Article  CAS  Google Scholar 

  26. Kochakpour, N., Immunofluorescent microscopic study of meiosis in zebrafish, Meth. Mol. Biol., 2009, vol. 558, pp. 251–260. https://doi.org/10.1007/978?1?60761?103?5_15

    Article  Google Scholar 

  27. Komen, J., Duynhouwer, J., Richter, C.J.J., and Huisman, E.A., Gynogenesis in common carp (Cyprinus carpio L.). I. Effects of genetic manipulation of sexual products and incubation conditions of eggs, Aquaculture, 1988, vol. 69, pp. 227–239.

    Article  Google Scholar 

  28. Krieger, J. and Fuerst, P.A., Evidence for a slowed rate of molecular evolution in the order Acipenseriformes, Mol. Biol. Evol., 2002, vol. 19, no. 6, pp. 891–897.https://doi.org/10.1093/oxfordjournals.molbev.a004146

    Article  CAS  Google Scholar 

  29. Krieger, J., Hett, A.K., Fuerst, P.A., et al., The molecular phylogeny of the order Acipenseriformes revisited, J. Appl. Ichthyol., 2008, vol. 24, no. s1, pp. 36–45. https://doi.org/10.1111/j.1439?0426.2008.01088.x

    Article  Google Scholar 

  30. Kusunoki, T., Arai, K., and Suzuki R., Production of viable gynogens without chromosome duplication in the spinous loach Cobitis biwae, Aquaculture, 1994, vol. 119, no. 1, pp. 11–23. https://doi.org/10.1016/0044?8486(94)90440?5

    Article  Google Scholar 

  31. Li, Y.-J., Yu, Zh., Zhang, M.-Zh., et al., The origin of natural tetraploid loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) inferred from meiotic chromosome configurations, Genetica, 2011, vol. 139, no. 6, pp. 805–811. https://doi.org/10.1007/s10709?011?9585?x

    Article  Google Scholar 

  32. Ludwig, A., Belfiore, N.M., Pitra, C., et al., Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus), Genetics, 2001, vol. 158, no. 3, pp. 1203–1215. https://doi.org/10.1093/genetics/158.3.1203

    Article  CAS  Google Scholar 

  33. McQuown, E., Sloss, B.L., Sheehan, R.J., et al., Microsatellite analysis of genetic variation in sturgeon: new primer sequences for Scaphirhynchus and Acipenser, Trans. Am. Fish. Soc., 2000, vol. 129, no. 6, pp. 1380–1388. https://doi.org/10.1577/1548?8659(2000)129<1380:MAOGVI>2.0.CO;2

    Article  CAS  Google Scholar 

  34. Moens, P.B., Zebrafish: chiasmata and interference, Genome, 2006, vol. 49, pp. 205–208. https://doi.org/10.1139/g06-021

    Article  CAS  Google Scholar 

  35. Nagy, A., Rajki, K., Harvath, L., and Csanyi, V., Investigation on carp, Cyprinus carpio L. gynogenesis, J. Fish Biol., 1978, vol. 13, pp. 215–224.

    Article  Google Scholar 

  36. Nelson, J.S., Fishes of the World, New Jersey: Wiley, 2006.

    Google Scholar 

  37. Onozato, H., The “Hertwig effect” and gynogenesis in chum salmon Oncorhynchus keta eggs fertilized with (60)Co gamma-ray irradiated milt, Bull. Jpn. Soc. Sci. Fish., 1982, vol. 48, pp. 1237–l244.

    Article  CAS  Google Scholar 

  38. Onozato, H. and Yamaha, E., Induction of gynogenesis with ultraviolet rays in four species of salmoniforms, Bull. Jpn. Soc. Sci. Fish., 1983, vol. 49, pp. 693–699.

    Article  Google Scholar 

  39. Peng, Z., Ludwig, A., Wang, D., et al., Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes), Mol. Phyl. Evol., 2007, vol. 42, no. 3, pp. 854–862. https://doi.org/10.1016/j.ympev.2006.09.008

    Article  CAS  Google Scholar 

  40. Pyatskowit, J.D., Krueger, C.C., Kincaid, H.L., and May, B., Inheritance of microsatellite loci in the polyploid lake sturgeon (Acipenser fulvescens), Genome, 2001, vol. 44, no. 2, pp. 185–191. https://doi.org/10.1139/g00?118

    Article  CAS  Google Scholar 

  41. Rajkov, J., Shao, Zh., and Berrebi, P., Evolution of polyploidy and functional diploidization in sturgeons: microsatellite analysis in 10 sturgeon species, J. Heredity, 2014, vol. 105, no. 4, pp. 521–531. https://doi.org/10.1093/jhered/esu027

    Article  Google Scholar 

  42. Recoubratsky, A.V., Grunina, A.S., Myuge, N.S., and Neyfakh, A.A., Production of androgenetic nucleocytoplasmic hybrids in sturgeon fish, Russ. J. Devel. Biol., 1998, vol. 29, pp. 224–229.

    Google Scholar 

  43. Recoubratsky, A.V., Grunina, A.S., Barmintsev, V.A., et al., Meiotic gynogenesis in the stellate and Russian sturgeons and sterlet, J. Heredity, 2003, vol. 34, pp. 92–101. https://doi.org/10.1023/A:1023396213126

    Article  CAS  Google Scholar 

  44. Robles, F., de la Herran, R., Ludwig, A. et al., Genomic organization and evolution of the 5S ribosomal DNA in the ancient fish sturgeon, Genome, 2005, vol. 48, pp. 18–28. https://doi.org/10.1139/g04?077

    Article  CAS  Google Scholar 

  45. Rodzen, J.A., and May, B., Inheritance of microsatellite loci in the white sturgeon (Acipenser transmontanus), Genome, 2002, vol. 45, no. 6, pp. 1064–1076. https://doi.org/10.1139/g02?083

    Article  CAS  Google Scholar 

  46. Romanenko, S.A., Biltueva, L.S., Serdyukova, N.A., et al., Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting, Mol. Cytogenet., 2015, vol. 8, no. 1, pp. 1–13. https://doi.org/10.1186/s13039?015?0194?8

    Article  Google Scholar 

  47. Safronov, A.S., Rachek, E.I., Zuevsky, S.E., et al., Results of comparative cultivation of kaluga, amur sturgeon and reciprocal hybrids between them with using of various technologies, Izv. Tikhook. Inst. Rybn. Khoz. Okeanogr., 2021, vol. 201, no. 4, pp. 923–936. https://doi.org/10.26428/1606?9919?2021?201?923?936

    Article  Google Scholar 

  48. Saitoh, K., Mitotic and meiotic analyses of the “large race” of Cobitis striata, a polyploid spined loach of hybrid origin, Folia Biol. (Krakow), 2003, vol. 5l, Supp1., pp. 101–105.

    Google Scholar 

  49. Simanovsky, S.A., Matveevsky, S.N., Rachek, E.I., et al., Analysis of meiotic chromosomes in some species and hybrids of sturgeons in the context of polyploid evolution, Proc. VIII Sci.-Pract. ConferenceGenetics − a fundamental basis for innovations in medicine and breeding”, Rostov-on-Don; Taganrog: Southern Federal University Press, 2019, pp. 76–77.

  50. Suzuki, R., Oshiro, T., and Nakanishi, T., Survival, growth and fertility of gynogenetic diploids induced in the cyprinid loach Misgurnus anguillicaudatus, Aquaculture, 1985, vol. 48, pp. 45–55.

    Article  Google Scholar 

  51. Tang, Q., Freyhof, J., Xiong, B., and Liu, H., Multiple invasions of Europe by East Asian cobitid loaches (Teleostei: Cobitidae), Hydrobiologia, 2008, vol. 605, pp. 17–28. https://doi.org/10.1007/s10750?008?9296?1

    Article  Google Scholar 

  52. Van Eenennaam, A.L., Murray, J.D., and Medrano, J.F., Synaptonemal complex analysis in spermatocytes of white sturgeon, Acipenser transmontanus Richardson (Pisces, Acipenseridae), a fish with a very high chromosome number, Genome, 1998, vol. 41, no. 1, pp. 51–61. https://doi.org/10.1139/g97-101

  53. Vasil’ev, V.P., Evolyutsionnaya kariologiya ryb (Evolutionary Karyology of Fish), Moscow: Nauka, 1985.

  54. Vasil’ev, V.P., Mechanisms of polyploid evolution in fish: polyploidy in sturgeons, Biology, Conservation and Sustainable Development of Sturgeons. Fish and Fisheries Series, vol. 29, Dordrecht: Springer, 2009, pp. 97–117.

    Google Scholar 

  55. Vasil’ev, V.P. and Vasil’eva, E.D., Polyploid evolution and functional genome diploidization in sturgeons, The 10th Indo-Pacific Fish Conference, Book of Abstract, Tahiti, CRIOBE, 2017, pp. 42. https://ipfc10.criobe.pf/cms/wp−content/uploads/2017/09/book−abstracts−ipfc10.pdf

    Google Scholar 

  56. Vasil’ev, V.P., Vasil’eva, E.D., Shedko, S.V., and Novomodny, G.V., Ploidy levels in the kaluga, Huso dauricus and Sakhalin sturgeon Acipenser mikadoi (Acipenseridae, Pisces), Dokl. Biol. Sci., 2009, vol. 426, pp. 228–231. https://doi.org/10.1134/s0012496609030119

    Article  Google Scholar 

  57. Vasil’ev, V.P., Vasil’eva, E.D., Shedko, S.V., and Novomodny, G.V., How many times has polyploidization occurred during Acipenserid evolution? New data on the karyotypes of sturgeons (Acipenseridae, Actinopterygii) from the Russian Far East, J. Ichthyol., 2010, vol. 50, no 10, pp. 950−959. https://doi.org/10.1134/S0032945210100048

    Article  Google Scholar 

  58. Vasil’ev, V.P., Rachek, E.I., Lebedeva, E.B., and Vasil’eva, E.D., The karyological study in backcross hybrids between the sterlet, Acipenser ruthenus, and kaluga, A. dauricus (Actinopterygii: Acipenseriformes: Acipenseridae): A. ruthenus x (A. ruthenus x A. dauricus) and A. dauricus x (A. ruthenus x A. dauricus), Acta Ichthyol. Piscat., 2014, vol. 44, no. 4, pp. 301–308. https://doi.org/10.3750/AIP2014.44.4.04

    Article  Google Scholar 

  59. Vasil’ev, V.P., Medvedev, D.A., Rachek, E.I., et al., Can evolutionary diploid genome of tetraploid sturgeon species maintain the functional properties of the normal diploid genome?, Proc. Internat. Sci. Conference “Genetics of Populations: Progress and Perspectives”, Moscow: Vash Format, 2017, pp. 50–51.

  60. Vasil’ev, V.P., Rachek, E.I., Amvrosov D.Yu., et al., Fertility of females of sturgeon hybrids obtained from species with different levels of ploidy (Acipenser ruthenus and A. dauricus) and their cloning, J. Appl. Ichthyol., 2021, vol. 37, no. 2, pp. 186–197. https://doi.org/10.1111/jai.14168

    Article  CAS  Google Scholar 

  61. Welsh, A.B., Blumberg, M., and May, B., Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris, Mol. Ecol. Notes, 2003, vol. 3, pp. 47–55. https//doi.org/ https://doi.org/10.1046/j.1471?8286 .2003.00346.x

  62. Wolfe, K.H., Yesterday’s polyploids and the mystery of diploidization, Nat. Rev. Genet., 2001, vol. 2, pp. 333–341. https://doi.org/10.1038/35072009

    Article  CAS  Google Scholar 

  63. Wu, C., Ye, Y., and Chen, R., Genome manipulation in carp (Cyprinus carpio L.), Aquaculture, 1986, vol. 54, pp. 57–61.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are very grateful to D. Amvrosov and E. Rachek who provided us with materials from LRFBS for our experimental crosses and genetic analyzes, as well as for their help in organizing and conducting our research at LRFBS. The authors also thank the anonymous reviewers for their valuable comments and suggestions, which undoubtedly improved the manuscript.

Funding

Experimental crosses in LRFBS, as well as microsatellite and synaptonemal complex analyses were conducted in 2017 and 2018 with partial financial support of the Russian Fund of Basic Researches; further scientific investigations of Ekaterina Vasil’eva were carried within a State Project of Moscow State University no. 121032300105-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Vasil’eva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, V.P., Simanovsky, S.A., Barmintseva, A.E. et al. Can the Ovum Genome of Tetraploid Sturgeon Species (Acipenseridae) Exhibit the Functional Properties of a Diploid Genome?. J. Ichthyol. 62, 1430–1438 (2022). https://doi.org/10.1134/S0032945222060303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945222060303

Keywords:

Navigation