Skip to main content
Log in

Features of Inner Ear Morphology of Gibel Carp Carassius gibelio (Cyprinidae)

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The mutual arrangement of the inner ear structures (membranous labyrinth) and their localization in the neurocranium are studied in gibel carp Carassius gibelio. The upper anterior part of the labyrinth (pars superior) is located at a substantial distance from its lower posterior part (pars inferior). The ventral region of the pars superior is freely located in the depression of the upper part of the prootic. The pars inferior including the sacculus and lagena is enclosed in a bone capsule of the basioccipital and bounded from above by a thin bony membrane (tectum basioccipital). The pars inferior structures that participated into the reception of vibrations of the swim bladder wall are located at the same level as the elements of the Weberian apparatus. The crus communis of the pars superior transits into the elongated ductus utriculus-sacculus, which enters the bony capsule through the medial opening in the tectum basioccipital. An updated scheme of the gibel carp inner ear is illustrated. The morphological and functional properties of the membranous labyrinth of the representatives of the group Otophysi are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Gibel carp with the former name Prussian carp Carassius auratus gibelio (Bogutskaya and Naseka, 2004) has been redescribed (Kalous et al., 2012). At present, the two species are separated: C. auratus (wild populations mainly from the Mediterranean region and Great Britain) and C. gibelio (two clades from (1) West Mongolia and (2) Europe, Russia, East Mongolia, and China) (Kalous et al., 2012; Rylková et al., 2013).

  2. In a later study (Popper and Fay, 2011), the authors suggest refusing the terms “hearing specialists” and “hearing generalists” and applying the term “specialization” only in the cases of a morphological connection between the inner ear and an air bubble that affects behavioral sensitivity to sound pressure.

REFERENCES

  1. Akmal, Y., Dhamayanti, Y., and Paujiah, E., Osteocranium of Tor tambroides (Cypriniformes: Cyprinidae) from Tangse River, Aceh, Indonesia, Biodiversitas, 2020, vol. 21, no. 2, pp. 442–450. https://doi.org/10.13057/biodiv/d210203

    Article  Google Scholar 

  2. AL-Jumaily, I.S., Morphological description of inner ear in Barbus luteus Heckel (Teleostei: Cyprinidae), Ibn Al Haitham J. Pure Appl. Sci., 2012, vol. 25, no. 3, pp. 104–112.

    Google Scholar 

  3. Assis, C.A., The lagenar otoliths of teleosts: their morphology and its application in species identification, phylogeny and systematics, J. Fish Biol., 2003, vol. 62, no. 6, pp. 1268–1295. https://doi.org/10.1046/j.1095-8649.2003.00106.x

    Article  Google Scholar 

  4. Bogutskaya, N.G. and Naseka, A.M., Katalog beschelyustnykh i ryb presnykh i solonovatykh vod Rossii s nomenklaturnymi i taksonomicheskimi kommentariyami (Catalog of Agnatha and Fishes of Fresh and Brackish Waters of Russia with Nomenclature and Taxonomic Comments), Moscow: KMK, 2004.

  5. Briggs, J.C., The biogeography of otophysan fishes (Ostariophysi: Otophysi): a new appraisal, J. Biogeogr., 2005, vol. 32, no. 2, pp. 287–294. https://doi.org/10.1111/j.1365-2699.2004.01170.x

    Article  Google Scholar 

  6. Canfield, J.G. and Rose, G.J., Hierarchical sensory guidance of Mauthner-mediated escape response in goldfish (Carassius auratus) and cichlids (Haplochromis burtoni), Brain Behav. Evol., 1996, vol. 48, no. 3, pp. 137–146. https://doi.org/10.1159/000113193

    Article  CAS  PubMed  Google Scholar 

  7. Chardon, M., Anatomie comparée de l’appareil de Weber et des structures connexes chez les Siluriformes, Ann. Mus. R. Afr. Centr., 1968, vol. 169, pp. 1–277.

    Google Scholar 

  8. Chardon, M. and Vandewalle, P., Acoustico-lateralis system, in Cyprinid Fishes: Systematics, Biology, and Exploitation, Winfield, I.J. and Nelson, J.S., Eds., Dordrecht: Springer-Verlag, 1991, pp. 332–352.

    Google Scholar 

  9. Chardon, M. and Vandewalle, P., Evolutionary trends and possible origin of the Weberian apparatus, Neth. J. Zool., 1997, vol. 47, no. 4, pp. 383–403. https://doi.org/10.1163/156854297X00076

    Article  Google Scholar 

  10. Chardon, M., Parmentier, E., and Vandewalle, P., Morphology, development and evolution of the Weberian apparatus in catfish, in Catfishes, Arratia, G., , Eds., Enfield: Sci. Publ., 2003, pp. 71–120.

    Google Scholar 

  11. Dakrory, A.I. and Hussein, A.K., Anatomical studies on the cranial nerves of Mugil cephalus (family: Mugilidae). Nervus vagus, Aust. J. Basic Appl. Sci., 2011, vol. 5, no. 12, pp. 60–74.

    Google Scholar 

  12. Emiroglu, Ö., Uyanoglu, M., and Baskurt, S., Comparison of the erythrocyte sizes of Carassius gibelio and Carassius carassius species living together in Akgöl (Adapazari/Turkey), Asian J. Anim. Vet. Adv., 2012, vol. 7, no. 9, pp. 876–883. https://doi.org/10.3923/ajava.2012.876.883

    Article  Google Scholar 

  13. Fay, R.R., Auditory frequency discrimination in the goldfish (Carassius auratus), J. Comp. Physiol. Psychol., 1970, vol. 73, no. 2, pp. 175–180. https://doi.org/10.1037/h0030245

    Article  Google Scholar 

  14. Fay, R.R., Psychophysics and neurophysiology of temporal factors in hearing by the goldfish: amplitude modulation detection, J. Neurophysiol., 1980, vol. 44, no. 2, pp. 312–332. https://doi.org/10.1152/jn.1980.44.2.312

    Article  CAS  PubMed  Google Scholar 

  15. Fay, R.R. and Popper, A.N., Acoustic stimulation of the ear of the goldfish (Carassius auratus), J. Exp. Biol., 1974, vol. 61, no. 1, pp. 243–260. https://doi.org/10.1242/jeb.61.1.243

    Article  CAS  PubMed  Google Scholar 

  16. Fay, R.R., Ahroon, W., and Orawski, A., Auditory masking patterns in the goldfish (Carassius auratus): psychophysical tuning curves, J. Exp. Biol., 1978, vol. 74, no. 1, pp. 83–100. https://doi.org/10.1242/jeb.74.1.83

    Article  CAS  PubMed  Google Scholar 

  17. Finneran, J.J. and Hastings, M.C., A mathematical analysis of the peripheral auditory system mechanics in the goldfish (Carassius auratus), J. Acoust. Soc. Am., 2000, vol. 108, no. 3, pp. 1308–1321. https://doi.org/10.1121/1.1286099

    Article  CAS  PubMed  Google Scholar 

  18. Flajšhans, M., A model approach to distinguish diploid and triploid fish by means of computer-assisted image analysis, Acta Vet. (Brno), 1977, vol. 66, no. 2, pp. 101–110. https://doi.org/10.2754/avb199766020101

    Article  Google Scholar 

  19. Frisch, K. and Stetter, H., Unterbuchungen über den Sitz des Géhörsinnes bei der Elritze, Z. Vergl. Physiol., 1932, vol. 17, no. 4, pp. 686–801. https://doi.org/10.1007/BF00339067

    Article  Google Scholar 

  20. Hall, L., Patricowski, M., and Fay, R.R., Neurophysiological mechanisms of intensity discrimination in the goldfish, in Hearing and Sound Communication in Fishes, Tavolga, W.N., et al., Eds., New York: Springer-Verlag. 1981, pp. 179–186. https://doi.org/10.1007/978-1-4615-7186-5_9

  21. Hama, K., A study on the fine structure of the saccular macula of the gold fish, Z. Zellforsch. Mikrosk. Anat., 1969, vol. 94, no. 2, pp. 155–171. https://doi.org/10.1007/bf00339353

    Article  CAS  PubMed  Google Scholar 

  22. Ito, H., Ishikawa, Y., Yoshimoto, M., and Yamamoto, N., Diversity of brain morphology in teleosts: brain and ecological niche, Brain Behav. Evol., 2007, vol. 69, no. 2, pp. 76–86. https://doi.org/10.1159/000095196

    Article  PubMed  Google Scholar 

  23. Jacobs, D.W. and Tavolga, W.N., Acoustic frequency discrimination in the goldfish, Anim. Behav., 1968, vol. 16, no. 1, pp. 67–71. https://doi.org/10.1016/0003-3472(68)90111-5

    Article  CAS  PubMed  Google Scholar 

  24. Jensen, J.C., Structure and innervation of the inner ear sensory organs in an otophysine fish, the upside-down catfish (Synodontis nigriventris David), Acta Zool., 1994, vol. 75, no. 2, pp. 143–160. https://doi.org/10.1111/j.1463-6395.1994.tb01118.x

    Article  Google Scholar 

  25. Jones, G.M. and Spells, K.E., A theoretical and comparative study of the functional dependence of the semicircular canal upon its physical dimensions, Proc. R. Soc. B, 1963, vol. 157, no. 968, pp. 403–419. https://doi.org/10.1098/rspb.1963.0019

    Article  CAS  Google Scholar 

  26. Kalous, L., Bohlen, J., Rylková, K., and Petrtýl, M., Hidden diversity within the Prussian carp and designation of a neotype for Carassius gibelio (Teleostei: Cyprinidae), Ichthyol. Explor. Freshwater, 2012, vol. 23, no. 1, pp. 11–18.

    Google Scholar 

  27. Kasumyan, A.O., The vestibular system and sense of equilibrium in fish, J. Ichthyol., 2004, vol. 44, suppl. 2, pp. S224–S268.

    Google Scholar 

  28. Knytl, M., Kalous, L., and Ráb, P., Karyotype and chromosome banding of endangered crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), Comp. Cytogenet., 2013, vol. 7, no. 3, pp. 205–213. https://doi.org/10.3897/CompCytogen.v7i3.5411

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ladich, F. and Schulz-Mirbach, T., Diversity in fish auditory systems: one of the riddles of sensory biology, Front. Ecol. Evol., 2016, vol. 4, art. ID 28. https://doi.org/10.3389/fevo.2016.00028

    Article  Google Scholar 

  30. Ladich, F. and Wysocki, L.E., How does tripus extirpation affect auditory sensitivity in goldfish? Hear. Res., 2003, vol. 182, nos. 1–2, pp. 119–129. https://doi.org/10.1016/S0378-5955(03)00188-6

    Article  PubMed  Google Scholar 

  31. Lanford, P., Platt, C., and Popper, A.N., Structure and function in the saccule of the goldfish (Carassius auratus): a model of diversity in the non-amniote ear, Hear. Res., 2000, vol. 143, nos. 1–2, pp. 1–13. https://doi.org/10.1016/s0378-5955(00)00015-0

    Article  CAS  PubMed  Google Scholar 

  32. Monakhov, S.P., As’keev, S.P., As’keev, I.V., et al., Past and present of species of genus Carassius in the Middle Volga region, Vopr. Rybolov., 2020, vol. 21, no. 1, pp. 5–19.

    Google Scholar 

  33. Nelson, J.S., Grande, T.C., and Wilson, M.V.H., Fishes of the World, Hoboken, NJ: Wiley, 2016, 5th ed.

    Book  Google Scholar 

  34. Parmentier, E., Vandewalle, P., and Lagardère, F., Morpho-anatomy of the otic region in carapid fishes: eco-morphological study of their otoliths, J. Fish Biol., 2001, vol. 58, no. 4, pp. 1046–1061. https://doi.org/10.1006/jfbi.2000.1511

    Article  Google Scholar 

  35. Platt, C., Hair cell distribution and orientation in goldfish otolith organs, J. Comp. Neurol., 1977, vol. 172, no. 2, pp. 283–297. https://doi.org/10.1002/cne.901720207

    Article  CAS  PubMed  Google Scholar 

  36. Popper, A.N. and Coombs, S., The morphology and evolution of the ear in Actinopterygian fishes, Am. Zool., 1982, vol. 22, no. 2, pp. 311–328. https://doi.org/10.1093/icb/22.2.311

    Article  Google Scholar 

  37. Popper, A.N. and Edds-Walton, P.L., Structural diversity in the inner ear of teleost fishes: implications for connections to the Mauthner cell, Brain Behav. Evol., 1995, vol. 46, no. 3, pp. 131–140. https://doi.org/10.1159/000113266

    Article  CAS  PubMed  Google Scholar 

  38. Popper, A.N. and Fay, R.R., Rethinking sound detection by fishes, Hear. Res., 2011, vol. 273, nos. 1–2, pp. 25–36. https://doi.org/10.1016/j.heares.2009.12.023

    Article  PubMed  Google Scholar 

  39. Popper, A.N. and Platt, C., Sensory surface of the saccule and lagena in the ears of Ostariophysan fishes, J. Morphol., 1983, vol. 176, no. 2, pp. 121–129. https://doi.org/10.1002/jmor.1051760202

    Article  PubMed  Google Scholar 

  40. Popper, A.N., Fay, R.R., Platt, C., and Sand, O., Sound detection mechanisms and capabilities of teleost fishes, in Sensory Processing in Aquatic Environments, Collin, S.P. and Marshall, N.J., Eds., New York: Springer-Verlag, 2003, pp. 3–38.

    Google Scholar 

  41. Popper, A.N., Ramcharitar, J., and Campana, S.E., Why otoliths? Insights from inner ear physiology and fisheries biology, Mar. Freshwater Res., 2005, vol. 56, no. 5, pp. 497–504. https://doi.org/10.1071/MF04267

    Article  Google Scholar 

  42. Przybył, A., Przybylski, M., Spóz, A., et al., Sex, size and ploidy ratios of Carassius gibelio from Poland, Aquat. Invasions, 2020, vol. 15, no. 2, pp. 335–354. https://doi.org/10.3391/ai.2020.15.2.08

    Article  Google Scholar 

  43. Putland, R.L., Montgomery, J.C., and Radford, C.A., Ecology of fish hearing, J. Fish. Biol., 2019, vol. 95, no. 1, pp. 39–52. https://doi.org/10.1111/jfb.13867

    Article  PubMed  Google Scholar 

  44. Retzius G., Das Gehörorgan der Wirbelthiere: Morphologische-Histologische Studien, Vol. 1: Das Gehörorgan der Fische und Amphibien, Stockholm: Samson and Wallin, 1881.

    Google Scholar 

  45. Rodgers, B.D., Morphology of the inner and peripheral ear of the loricariid catfish Pterygoplichthys gibbiceps K., PhD Thesis, Bowling Green, KY: Western Kentucky Univ., 2008. http://digitalcommons.wku.edu/stu_hon_theses/221.

    Google Scholar 

  46. Rylková, K., Kalous, L., Bohlen, J., et al., Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe, Aquaculture, 2013, vol. 380–383, pp. 13–20. https://doi.org/10.1016/J.AQUACULTURE.2012.11.027

    Article  Google Scholar 

  47. Schulz-Mirbach, T., Heß, M., and Plath, M., Inner ear morphology in the Atlantic molly Poecilia mexicana—first detailed microanatomical study of the inner ear of a cyprinodontiform species, PLoS One, 2011, vol. 6, no. 11, art. ID e27734. https://doi.org/10.1371/journal.pone.0027734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schulz-Mirbach, T., Metscher, B., and Ladich, F., Relationship between swim bladder morphology and hearing abilities—a case study on Asian and African cichlids, PLoS One, 2012, vol. 7, no. 8, art. ID e42292. https://doi.org/10.1371/journal.pone.0042292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schulz-Mirbach, T., Heß, M., Metscher, B.D., et al., A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microtomographic and three-dimensional histological study, BMC Biol., 2013a, vol. 11, art. ID 75. https://doi.org/10.1186/1741-7007-11-75

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schulz-Mirbach, T., Heß, M., and Metscher, B.D., Sensory epithelia of the fish inner ear in 3D: studied with high-resolution contrast enhanced microCT, Front. Zool., 2013b, vol. 10, art. ID 63. https://doi.org/10.1186/1742-9994-10-63

    Article  PubMed  PubMed Central  Google Scholar 

  51. Smith, M.E., Coffin, A.B., Miller, D.L., and Popper, A.N., Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure, J. Exp. Biol., 2006, vol. 209, no. 21, pp. 4193–4202. https://doi.org/10.1242/jeb.02490

    Article  PubMed  Google Scholar 

  52. Song, J., Mann, D.A., Cot, P.A., et al., The inner ears of Northern Canadian freshwater fishes following exposure to seismic air gun sounds, J. Acoust. Soc. Am., 2008, vol. 124, no. 2, pp. 1360–1366. https://doi.org/10.1121/1.2946702

    Article  PubMed  PubMed Central  Google Scholar 

  53. Takahasi, N., Revision of the names of head bones of Cyprinus carpio and Carassius auratus, Jpn. J. Ichthyol., 1952, vol. 2, nos. 4–5, pp. 196–205. https://doi.org/10.11369/jji1950.2.196

    Article  Google Scholar 

  54. Vasil’eva, E.D., The morphological divergence of gynogenetic and bisexual forms of the goldfish Carassius auratus (Cyprinidae, Pisces), Zool. Zh., 1990, vol. 69, no. 11, pp. 97–110.

    Google Scholar 

  55. Vasil’eva, E.D. and Vasil’ev, V.P., The origin and taxonomic status of the triploid form of the goldfish Carassius auratus (Cyprinidae), Vopr. Ikhtiol., 2000, vol. 40, no. 5, pp. 581–592.

    Google Scholar 

  56. Watson, J.M., The development of the Weberian ossicles and anterior vertebrae in the goldfish, Proc. R. Soc. B, 1939, vol. 127, no. 849, pp. 452–472. https://doi.org/10.1098/rspb.1939.0034

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to A.O. Kasumyan (Moscow State University) and anonymous reviewers for their valuable comments on the text of the manuscript.

Funding

The study was conducted according to the scientific project of the State target of Moscow State University 20-1-21 № 121032300102-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Pavlov.

Ethics declarations

Conflict of interests. The author declares that he has no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by D. Pavlov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, D.A. Features of Inner Ear Morphology of Gibel Carp Carassius gibelio (Cyprinidae). J. Ichthyol. 62, 195–204 (2022). https://doi.org/10.1134/S0032945222020138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945222020138

Keywords:

Navigation