Skip to main content
Log in

Population Dynamics of Atlantic Chub Mackerel Scomber colias at the Multispecies Fishery

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Population dynamics of Atlantic chub mackerel Scomber colias in the central-eastern Atlantic Ocean is described by the Schaefer production model using the fish abundance index as input. Developing of the representative species abundance index is considered as an example for a multispecies fishery prevailing in the area. A procedure for processing the daily fishing reports database is proposed, which includes an algorithm for forming a representative sample, testing the hypothesis of statistical homogeneity of observations, and standardizing the population index by the method of generalized linear models (GLM). The fishery of pelagic fish in the central-eastern Atlantic Ocean is not selective, and the seasonal spatial distribution of the species and the capacity of fishing vessels are the most significant factors of productivity. The recent catch (420 thousand tons in 2018) is a historical maximum; according to the productivity model, it approaches the estimate of the upper limit of the sustainable catch (499 thousand tons). Exceeding this target of fishing impact will inevitably lead to the overfishing and sharp reduction of the Atlantic chub mackerel population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Artemenkov, D.V., Kivva, K.K., and Nikitenko, A.I., Impact of climate change on distribution and assessment of biomass of commercial fish stocks in the Atlantic Ocean basin, Materialy II Vserossiiskoi nauchnoi konferentsii molodykh uchenykh “Kompleksnye issledovaniya Mirovogo okeana” (Proc. II All-Russ. Sci. Conf. of Young Scientists “Complex Studies of the World Ocean”), Moscow: Inst. Okeanol. im. P.P. Shirshova, Ross. Akad. Nauk, 2017, pp. 318–320.

  2. Babayan, V.K., Predostorozhnyi podkhod k otsenke obshchego dopustimogo ulova (ODU). Analiz i rekomendatsii po primeneniyu (Precautionary Approach to Assessment of Total Allowable Catch (TAC): Analysis and Application Guide), Moscow: VNIRO, 2000.

  3. Babayan, V.K., Bobyrev, A.E., Bulgakova, T.I., et al., Metodicheskie rekomendatsii po otsenke zapasov prioritetnykh vidov vodnykh biologicheskikh resursov (Guide for Assessment of Reserves of Priority Aquatic Biological Species), Moscow: VNIRO, 2018.

  4. Biseau, A., Definition of a directed fishing effort in a mixed-species trawl fishery, and its impact on stock assessments, Aquat. Living Resour., 1998, vol. 11, pp. 119–136. https://doi.org/10.1016/S0990-7440(98)80109-5

    Article  Google Scholar 

  5. Bulgakova, T.I., Regulirovanie mnogovidovogo rybolovstva na osnove matematicheskogo modelirovaniya (Regulation of Multispecies Fishery Based on Mathematical Modeling), Moscow: VNIRO, 2009.

  6. Bulgakova, T.I., Models of regulation of mixed fishery, Vopr. Rybolov., 2015, vol. 16, no. 4, pp. 440–449.

    Google Scholar 

  7. Carruthers, T.R., McAllister, M.K., and Ahrens, R.N.M., Simulating spatial dynamics to evaluate methods of deriving abundance indices for tropical tunas, Can. J. Fish. Aquat. Sci., 2010, vol. 67, pp. 1409–1427. https://doi.org/10.1007/978-3-642-20677-1_9

    Article  Google Scholar 

  8. Carruthers, T.R., Punt, A.E., Walters, C.J., et al., Evaluating methods for setting catch limits in data-limited fisheries, Fish. Res., 2014, vol. 153, pp. 48–68. https://doi.org/10.1016/j.fishres.2013.12.014

    Article  Google Scholar 

  9. Carvalho, F.C., Murie, D.J., Hazin, F.H.V., et al., Catch rates and size composition of blue sharks (Prionace glauca) caught by the Brazilian pelagic longline fleet in the southwestern Atlantic Ocean, Aquat. Living Resour., 2010, vol. 23, pp. 373–385. https://doi.org/10.1051/alr/2011005

    Article  Google Scholar 

  10. Froese, R., Demirel, N., and Sampang, A., An overall indicator for the good environmental status of marine waters based on commercially exploited species, Mar. Policy, 2015, vol. 51, pp. 230–237. https://doi.org/10.1016/j.marpol.2014.07.012

    Article  Google Scholar 

  11. Froese, R., Demirel, N., Coro, G., et al., Estimating fisheries reference points from catch and resilience, Fish Fish., 2017, vol. 18, no. 3, pp. 506–526. https://doi.org/10.1111/faf.12190

    Article  Google Scholar 

  12. Haddon, M., Klaer, N., Smith, D.C., et al., Technical Reviews for the Commonwealth Harvest Strategy Policy, No. FRDC 2012/225, Hobart: Commonw. Sci. Ind. Res. Org., 2012.

    Google Scholar 

  13. He, X., Bigelow, K., and Boggs, C., Cluster analysis of longline sets and fishing strategies within the Hawaii-based fishery, Fish. Res., 1997, vol. 31, pp. 147–158. https://doi.org/10.1016/S0165-7836(96)00564-4

    Article  Google Scholar 

  14. Kimura, D.K., Standardized measures of relative abundance based on modeling log (c.p.u.e.), and their application to Pacific ocean perch (Sebastes alutus), ICES J. Mar. Sci., 1981, vol. 39, pp. 211–218. https://doi.org/10.1093/icesjms/39.3.211

    Article  Google Scholar 

  15. Krovnin, A.S., Mel’nikov, S.P., Artemenkov, D.V., et al., Effect of variability of oceanological conditions on the deepwater redfish in the pelagic zone of the North Atlantic, Tr. VNIRO, 2017, vol. 169, pp. 51–63.

    Google Scholar 

  16. Maunder, M.N. and Punt, A.E., Standardizing catch and effort data: a review of recent approaches, Fish. Res., 2004, vol. 70, nos. 2–3, pp. 141–159. https://doi.org/10.1016/j.fishres.2004.08.002

    Article  Google Scholar 

  17. McCullagh, P. and Nelder, J.A., Generalized Linear Models, London: Chapman and Hall, 1989, 2nd ed.

    Book  Google Scholar 

  18. Mel’nikov, S.P., Krovnin, A.S., Artemenkov, D.V., et al., Impact of climate change on the assessment of the deepwater redfish Sebastes mentella stocks in the pelagic zone of the North Atlantic, Materialy IV Mezhdunarodnogo Baltiiskogo foruma “Vodnye bioresursy, akvakul’tura i ekologiya vodoemov” (Proc. IV Int. Baltic Marine Forum “Aquatic Biological Resources, Aquaculture, and Ecology of Reservoirs”), Kaliningrad: Kaliningrad. Gos. Tekh. Univ., 2016, pp. 43–46.

  19. Meyer, R. and Millar, R.B., BUGS in Bayesian stock assessment, Can. J. Fish. Aquat. Sci., 1999, vol. 56, pp. 1078–1086. https://doi.org/10.1139/f99-043

    Article  Google Scholar 

  20. Mikhailov, A.I., Mathematical aspects of standardization of catch increase, Vopr. Rybolov., 2015, vol. 16, no. 4, pp. 489–496.

    Google Scholar 

  21. Mikhailov, A.I., Diagnostics of models of the abundance dynamics of commercial aquatic organisms, Vopr. Rybolov., 2019, vol. 20, no. 2, pp. 183–191.

    Google Scholar 

  22. Millar, R.B. and Meyer, R., Non-linear state space modeling of fisheries biomass dynamics by using Metropolis-Hastings within-Gibbs sampling, J. R. Stat. Soc., Ser C: Appl. Stat., 2000, vol. 49, no. 3, pp. 327-342.

    Article  Google Scholar 

  23. Nikitenko, A.I., Artemenkov, D.V., Belyev, V.A., et al., Specific migration, distribution and fishing of Atlantic chub mackerel (Scomber colias) in the Central-Eastern Atlantic area, Vopr. Rybolov., 2020, vol. 21, no. 3, pp. 1–11. https://doi.org/10.36038/0234-2774-2020-21-302-312

    Article  Google Scholar 

  24. Palmer, M., Quetglas, A., Guijarro, B., et al., Performance of artificial neural networks and discriminant analysis in predicting fishing tactics from multispecific fisheries, Can. J. Fish. Aquat. Sci., 2009, vol. 66, pp. 224–237. https://doi.org/10.1139/F08-208

    Article  Google Scholar 

  25. Pelletier, D. and Ferraris, J., A multivariate approach for defining fishing tactics from commercial catch and effort data, Can. J. Fish. Aquat. Sci., 2000, vol. 57, pp. 51–65. https://doi.org/10.1139/f99-176

    Article  Google Scholar 

  26. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty, Hilborn, R. and Walters, C.J., Eds., New York: Springer-Verlag, 1992. https://doi.org/10.1007/978-1-4615-3598-0

  27. Quirijns, F.J., Poos, J.J., and Rijnsdorp, A.D., Standardizing commercial CPUE data in monitoring stock dynamics: accounting for targeting behavior in mixed fisheries, Fish. Res., 2008, vol. 89, pp. 1–8. https://doi.org/10.1016/j.fishres.2007.08.016

    Article  Google Scholar 

  28. R Core Team, R: A Language and Environment for Statistical Computing, Vienna: R Found. Stat. Comput., 2013. http://www.R-project.org/.

  29. Ricker, W.E., Computation and Interpretation of biological statistics of fish populations, Bull. Fish. Res. Board Can., 1975, vol. 191.

  30. Schaefer, M., Some aspects of the dynamics of populations important to the management of the commercial marine fisheries, Bull. Math. Biol., 1991, vol. 53, nos. 1–2, pp. 253–279. https://doi.org/10.1016/S0092-8240(05)80049-7

    Article  Google Scholar 

  31. Schnute, J.T. and Richards, L.J., Surplus production models, in Handbook of Fish Biology and Fisheries, Vol. 2: Fisheries, Chichester: Wiley, 2002, pp. 105–126.

  32. GitHub, Sobolion/TargetFISH, 2020. https://github.com/ sobolion/TargetFISH.

  33. Stocker, M. and Foumier, D., Estimation of relative fishing power and allocation of effective effort, with catch forecasts, in a multispecies fishery, Int. North Pac. Fish. Comm. Bull., 1984, vol. 42, pp. 3–9.

    Google Scholar 

  34. Walters, C.J. and Martell, S.J.D., Fisheries Ecology and Management, Princeton, NJ: Princeton Univ. Press, 2004. https://doi.org/10.1016/j.ecoleng.2005.05.001

  35. Winker, H., Kerwath, S.E., and Attwood, C.G., Comparison of two approaches to standardize catch-per-unit-effort for targeting behavior in a multispecies hand-line fishery, Fish Res., 2013, vol. 139, pp. 118–131. https://doi.org/10.1016/J.FISHRES.2012.10.014

    Article  Google Scholar 

  36. Winker, H., Kerwath, S.E., and Attwood, C.G., Proof of concept for a novel procedure to standardize multispecies catch and effort data, Fish Res., 2014, vol. 155, pp. 149–159. https://doi.org/10.1016/J.FISHRES.2014.02.016

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere gratitude to dearly departed V.K. Babayan (VNIRO) for valuable discussions during the work on the article, as well as to V.R. Sokolovsky (VNIRO) for a number of useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Nikitenko.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemenkov, D.V., Mikhailov, A.I., Nikitenko, A.I. et al. Population Dynamics of Atlantic Chub Mackerel Scomber colias at the Multispecies Fishery. J. Ichthyol. 61, 900–911 (2021). https://doi.org/10.1134/S0032945221060011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945221060011

Key words:

Navigation