Skip to main content
Log in

Atomistic Simulation of Self-Diffusion and Diffusion of Со along Symmetric Tilt Grain Boundaries \(\left[ {2\bar {1}\bar {1}0} \right]\) in α-Ti

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The structure, point defects, self-diffusion, and diffusion of Co are studied by the computer simulation methods for four energetically advantageous grain boundaries (GBs) with tilt axis \(\left[ {2\bar {1}\bar {1}0} \right]\) in the hexagonal close-packed (hcp) Ti. The structure and energies of these boundaries, as well as the energies of point defect formation in them are calculated by the method of molecular static simulation. The dependences of the energies of point defect formation on the distance from the grain boundary plane are demonstrated. The grain-boundary self-diffusion coefficients for the considered GBs are computed by the molecular dynamics method. The self-diffusion simulation results are compared with the available experimental data. In addition to that, grain-boundary diffusion of Co in α-Ti is simulated. It is shown that the GB structure affects the parameters of the grain-boundary diffusion both in the case of self-diffusion and in the case of impurity diffusion, and the grain-boundary diffusion coefficients can differ by several orders of magnitude, depending on the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  2. M. A. Korneva, S. V. Starikov, A. P. Zhilyaev, I. S. Akhatov, and P. A. Zhilyaev, “Atomistic modeling of grain boundary migration in nickel,” Adv. Eng. Mater. 22, 2000115 (2020). https://doi.org/10.1002/adem.202000115

    Article  CAS  Google Scholar 

  3. H. He, S. Ma, and S. Wang, “Survey of grain boundary energies in tungsten and beta-titanium at high temperature,” Materials 15, 156 (2022). https://doi.org/10.3390/ma15010156

    Article  CAS  Google Scholar 

  4. H. He, S. Ma, and S. Wang, “Molecular dynamics investigation on tilt grain boundary energies of beta-titanium and tungsten at high temperature,” Mater. Res. Express 8, 116509 (2021). https://doi.org/10.1088/2053-1591/ac3606

    Article  CAS  Google Scholar 

  5. M. A. Tschopp and D. L. McDowell, “Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium,” Philos. Mag. 87, 3147–3173 (2007). https://doi.org/10.1080/14786430701255895

    Article  CAS  Google Scholar 

  6. T. Frolov, D. L. Olmsted, M. Asta, and Yu. Mishin, “Structural phase transformations in metallic grain boundaries,” Nat. Commun. 4, 1899 (2013). https://doi.org/10.1038/ncomms2919

    Article  CAS  Google Scholar 

  7. L. Zhang, C. Lu, and K. Tieu, “A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals,” Comput. Mater. Sci. 118, 180–191 (2016). https://doi.org/10.1016/j.commatsci.2016.03.021

    Article  CAS  Google Scholar 

  8. Z.-H. Liu, Ya-X. Feng, and J.-X. Shang, “Characterizing twist grain boundaries in BCC Nb by molecular simulation: Structure and shear deformation,” Appl. Surf. Sci. 370, 19–24 (2016). https://doi.org/10.1016/j.apsusc.2016.02.097

    Article  CAS  Google Scholar 

  9. T. Frolov, W. Setyawan, R. J. Kurtz, J. Marian, A. R. Oganov, R. E. Rudd, and Q. Zhu, “Grain boundary phases in bcc metals,” Nanoscale 10, 8253–8268 (2018). https://doi.org/10.1039/c8nr00271a

    Article  CAS  Google Scholar 

  10. J. Wang and I. J. Beyerlein, “Atomic structures of [0͞110] symmetric tilt grain boundaries in hexagonal close-packed (hcp) crystals,” Metall. Mater. Trans. A 43, 3556–3569 (2012). https://doi.org/10.1007/s11661-012-1177-6

    Article  CAS  Google Scholar 

  11. P. Liu, J. Xie, A. Wang, D. Ma, and Z. Mao, “Molecular dynamics simulation on the deformation mechanism of monocrystalline and nano-twinned TiN under nanoindentation,” Mater. Chem. Phys. 252, 123263 (2020). https://doi.org/10.1016/j.matchemphys.2020.123263

    Article  CAS  Google Scholar 

  12. C. Barrett, J. Martinez, and M. Nitol, “Faceting and twin–twin interactions in {1121} and {1122} twins in titanium,” Metals 12, 895 (2022). https://doi.org/10.3390/met12060895

    Article  CAS  Google Scholar 

  13. J. Wang and I. J. Beyerlein, “Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals,” Modell. Simul. Mater. Sci. Eng. 20, 24002 (2012). https://doi.org/10.1088/0965-0393/20/2/024002

    Article  CAS  Google Scholar 

  14. M. A. Bhatia and K. N. Solanki, “Energetics of vacancy segregation to symmetric tilt grain boundaries in hexagonal closed pack materials,” J. Appl. Phys. 114, 244309 (2013). https://doi.org/10.1063/1.4858401

    Article  CAS  Google Scholar 

  15. J. Wang, S. K. Yadav, J. P. Hirth, C. N. Tomé, and I. J. Beyerlein, “Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals,” Mater. Res. Lett. 1, 126–132 (2013). https://doi.org/10.1080/21663831.2013.792019

    Article  CAS  Google Scholar 

  16. S. Ma and Sh.-Q. Wang, “The formation and anisotropic/isotropic diffusion behaviors of vacancy in typical twin boundaries of α-Ti: An ab initio study,” Comp. Mater. Sci. 159, 257–264 (2019). https://doi.org/10.1016/j.commatsci.2018.12.030

    Article  CAS  Google Scholar 

  17. M. G. Urazaliev, M. E. Stupak, and V. V. Popov, “An atomistic simulation of special tilt boundaries in α-Ti: Structure, energy, point defects, and grain-boundary self-diffusion,” Phys. Met. Metallogr. 123, 576–582 (2022). https://doi.org/10.1134/s0031918x2206014x

    Article  CAS  Google Scholar 

  18. M. G. Urazaliev, M. E. Stupak, and V. V. Popov, “Energetically favorable configurations of symmetric tilt grain boundaries in HCP titanium,” AIP Conf. Proc. 2466, 030047 (2022). https://doi.org/10.1063/5.0088827

    Article  CAS  Google Scholar 

  19. C. Herzig, R. Willecke, and K. Vieregge, “Self-diffusion and fast cobalt impurity diffusion in the bulk and in grain boundaries of hexagonal titanium,” Philos. Mag. A 63, 949–958 (1991). https://doi.org/10.1080/01418619108213927

    Article  CAS  Google Scholar 

  20. Ch. Herzig, T. Wilger, T. Przeorski, F. Hisker, and S. Divinski, “Titanium tracer diffusion in grain boundaries of α-Ti, α2-Ti3Al, and γ-TiAl and in α2/γ interphase boundaries,” Intermetallics 9, 431–442 (2001). https://doi.org/10.1016/s0966-9795(01)00022-x

    Article  CAS  Google Scholar 

  21. J. Fiebig, S. Divinski, H. Rösner, Yu. Estrin, and G. Wilde, “Diffusion of Ag and Co in ultrafine-grained α-Ti deformed by equal channel angular pressing,” J. Appl. Phys. 110, 83514 (2011). https://doi.org/10.1063/1.3650230

    Article  CAS  Google Scholar 

  22. J. R. Fernández, A. M. Monti, R. C. Pasianott, and V. Vitek, “An atomistic study of formation and migration of vacancies in (1121) twin boundaries in Ti and Zr,” Philos. Mag. A 80, 1349–1364 (2000). https://doi.org/10.1080/01418610008212123

    Article  Google Scholar 

  23. S.-H. Oh, D. Seol, and B.-J. Lee, “Second nearest-neighbor modified embedded-atom method interatomic potentials for the Co–M (M = Ti, V) binary systems,” Calphad 70, 101791 (2020). https://doi.org/10.1016/j.calphad.2020.101791

    Article  CAS  Google Scholar 

  24. NIST Interatomic Potentials Repository. https://www.ctcms.nist.gov/potentials.

  25. C. Kittel and P. McEuen, Introduction to Solid State Physics (Wiley, New York, 1996).

    Google Scholar 

  26. E. S. Fisher and C. J. Renken, “Single-crystal elastic moduli and the hcp → bcc transformation in Ti, Zr, and Hf,” Phys. Rev. 135, A482–A494 (1964). https://doi.org/10.1103/physrev.135.a482

    Article  Google Scholar 

  27. E. Hashimoto, E. A. Smirnov, and T. Kino, “Temperature dependence of the Doppler-broadened lineshape of positron annihilation in α-Ti,” J. Phys. F: Met. Phys. 14, L215–L217 (1984). https://doi.org/10.1088/0305-4608/14/10/004

    Article  CAS  Google Scholar 

  28. W. R. Tyson and W. A. Miller, “Surface free energies of solid metals: Estimation from liquid surface tension measurements,” Surf. Sci. 62, 267–276 (1977). https://doi.org/10.1016/0039-6028(77)90442-3

    Article  CAS  Google Scholar 

  29. S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  30. P. Hirel, “Atomsk: A tool for manipulating and converting atomic data files,” Comput. Phys. Commun. 197, 212–219 (2015). https://doi.org/10.1016/j.cpc.2015.07.012

    Article  CAS  Google Scholar 

  31. A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,” Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  32. T. Suzudo, M. Yamaguchi, and A. Hasegawa, “Stability and mobility of rhenium and osmium in tungsten: first principles study,” Modell. Simul. Mater. Sci. Eng. 22, 075006 (2014). https://doi.org/10.1088/0965-0393/22/7/075006

    Article  CAS  Google Scholar 

  33. S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511–519 (1984). https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  34. D. Faken and H. Jónsson, “Systematic analysis of local atomic structure combined with 3D computer graphics,” Comput. Mater. Sci. 2, 279–286 (1994). https://doi.org/10.1016/0927-0256(94)90109-0

    Article  CAS  Google Scholar 

  35. A. Suzuki and Y. Mishin, “Atomistic modeling of point defects and diffusion in copper grain boundaries,” Interface Sci. 11, 131–148 (2003). https://doi.org/10.1023/a:1021599310093

    Article  CAS  Google Scholar 

  36. S. Starikov, M. Mrovec, and R. Drautz, “Study of grain boundary self-diffusion in iron with different atomistic models,” Acta Mater. 188, 560–569 (2020). https://doi.org/10.1016/j.actamat.2020.02.027

    Article  CAS  Google Scholar 

  37. V. V. Popov, “Mössbauer spectroscopy of interfaces in metals,” Phys. Met. Metallogr. 113, 1257–1289 (2012). https://doi.org/10.1134/s0031918x12130029

    Article  Google Scholar 

  38. I. S. Grigoriev and E. Z. Meilikhov, Handbook of Physical Values (Energoatomizdat, Moscow, 1991).

    Google Scholar 

  39. M. E. Stupak, M. G. Urazaliev, and V. V. Popov, “Structure and energy of <110> symmetric tilt boundaries in polycrystalline tungsten,” Phys. Met. Metallogr. 121, 797–803 (2020). https://doi.org/10.1134/S0031918X20080116

    Article  CAS  Google Scholar 

  40. M. G. Urazaliev, M. E. Stupak, and V. V. Popov, “Structure and energy of symmetric tilt boundaries with the 〈110〉 axis in Ni and the energy of formation of vacancies in grain boundaries,” Phys. Met. Metallogr. 122, 665–672 (2021). https://doi.org/10.1134/s0031918x21070139

    Article  CAS  Google Scholar 

  41. A. Hallil, A. Metsue, J. Bouhattate, and X. Feaugas, “Correlation between vacancy formation and Σ3 grain boundary structures in nickel from atomistic simulations,” Philos. Mag. 96, 2088–2114 (2016). https://doi.org/10.1080/14786435.2016.1189616

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Computations were performed on the Uran supercomputer at the IMM UB RAS. The authors thank Yu.N. Gornostyrev for his advice and aid in discussing the results.

Funding

The study is supported by the Russian Science Foundation, project no. 21-13-00063 (https://rscf.ru/project/21-13-00063/), at the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Urazaliev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urazaliev, M.G., Stupak, M.E. & Popov, V.V. Atomistic Simulation of Self-Diffusion and Diffusion of Со along Symmetric Tilt Grain Boundaries \(\left[ {2\bar {1}\bar {1}0} \right]\) in α-Ti. Phys. Metals Metallogr. 124, 923–933 (2023). https://doi.org/10.1134/S0031918X23601567

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601567

Keywords:

Navigation