Skip to main content
Log in

Precipitation Behavior of Primary Carbide in H13 Bloom Die Steel

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

To analyze the solidification and precipitation behaviors of primary carbides in H13 bloom die steel, the size, morphology, distribution, and type of carbides from the chilling edge to the center of bloom H13 steel are studied by using a scanning electron microscope (SEM), an X-ray diffractometer and a Thermo-Calc thermodynamic software, and both formation time of carbides under equilibrium and non-equilibrium solidification are discussed. Results show that the primary carbides are distributed in the final solidification of steel, mainly including MC type V–Ti PC, V PC and M7C3 type Mo–Cr PC. From the edge to the center, the average area of primary carbide increases by 620.22 μm2, with an increase of 3.53%. From the edge to 1/4 position, V-rich and Mo–Cr-rich carbides mainly exist; at the 1/4 position, V-rich and Mo–Cr-rich carbides are interconnected; from 1/4 position to center, three kinds of interconnected V–Ti PC, V‑rich PC and Mo–Cr PC carbides exist. Oxides promote the precipitation of MC type while sulfides promote the precipitation of M7C3 type. Thermodynamics show that the primary carbide MC will not be formed in the equilibrium solidification, but will precipitate in non-equilibrium, with the precipitation temperature of 1108°C at the solidification fraction of 0.9987.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Ch.-B. Shi, Q.-T. Zhu, W.-T. Yu, H.-D. Song, and J. Li, “Effect of oxide inclusions modification during electroslag remelting on primary carbides and toughness of a high-carbon 17 mass% Cr tool steel,” J. Mater. Eng. Perform. 25, 4785–4795 (2016). https://doi.org/10.1007/s11665-016-2361-4

    Article  CAS  Google Scholar 

  2. Z. Wu, W. Zheng, G. Li, H. Matsuura, and F. Tsukihashi, “Effect of inclusions’ behavior on the microstructure in Al-Ti deoxidized and magnesium-treated steel with different aluminum contents,” Metall. Mater. Trans. B 46, 1226–1241 (2015). https://doi.org/10.1007/s11663-015-0311-4

    Article  CAS  Google Scholar 

  3. A. Tridello, D. S. Paolino, G. Chiandussi, and M. Rossetto, “Effect of electroslag remelting on the VHCF response of an AISI H13 steel,” Fatigue Fract. Eng. Mater. Struct. 40, 1783–1794 (2017). https://doi.org/10.1111/ffe.12696

    Article  CAS  Google Scholar 

  4. Yu. Hou, G. Cheng, and H. Cheng, “Effect of oxide composition on the orientation relationship and disregistry in complex nucleus of Ti and Nb stabilized ferritic stainless steel revealed by EBSD measurement,” Metall. Mater. Trans. B 51, 709–721 (2020). https://doi.org/10.1007/s11663-019-01767-x

    Article  CAS  Google Scholar 

  5. M. Li, H. Matsuura, and F. Tsukihashi, “Characterization of oxide + TiN inclusions in Fe-16 mass Pct Cr ferritic alloy using automatic SEM-EDS analysis,” Metall. Mater. Trans. B 50, 748–760 (2019). https://doi.org/10.1007/s11663-019-01513-3

    Article  CAS  Google Scholar 

  6. B. He, J. Li, C. Shi, and H. Wang, “Effect of Mg addition on carbides in H13 steel during electroslag remelting process,” Metall. Res. Technol. 115 (5), 501 (2018). https://doi.org/10.1051/metal/2018071

    Article  CAS  Google Scholar 

  7. D.-Sh. Ma, J. Zhou, Z.-Zh. Chen, Zh.-K. Zhang, Q.‑A. Chen, and D.-H. Li, “Influence of thermal homogenization treatment on structure and impact toughness of H13 ESR steel,” J. Iron Steel Res. Int. 16 (5), 56–60 (2009). https://doi.org/10.1016/s1006-706x(10)60011-8

    Article  CAS  Google Scholar 

  8. S. K. Choudhary and A. Ghosh, “Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel,” ISIJ Int. 49, 1819–1827 (2009). https://doi.org/10.2355/isijinternational.49.1819

    Article  CAS  Google Scholar 

  9. J. Li, J. Li, L.-L. Wang, and Q.-T. Zhu, “Study of the effect of trace Mg additions on carbides in die steel H13,” Met. Sci. Heat Treat. 58, 330–334 (2016). https://doi.org/10.1007/s11041-016-0012-x

    Article  CAS  ADS  Google Scholar 

  10. M.-T. Mao, H.-J. Guo, F. Wang, and X.-L. Sun, “Chemical composition and structural identification of primary carbides in as-cast H13 steel,” Int. J. Miner., Metall., Mater. 26, 839–848 (2019). https://doi.org/10.1007/s12613-019-1796-7

    Article  CAS  Google Scholar 

  11. X. Wang, G. Li, Yu. Liu, Yu. Cao, F. Wang, and Q. Wang, “Investigation of primary carbides in a commercial-sized electroslag remelting ingot of H13 steel,” Metals 9, 1247–1256 (2019). https://doi.org/10.3390/met9121247

    Article  CAS  Google Scholar 

  12. Yu. Huang, G. Cheng, S. Li, and W. Dai, “Precipitation behavior of large primary carbides in cast H13 steel,” Steel Res. Int. 90, 1900035 (2019). https://doi.org/10.1002/srin.201900035

    Article  CAS  Google Scholar 

  13. Yo. Xie, G. Cheng, X. Meng, and Yu. Huang, “Thermal stability of primary elongated V-rich carbonitrides in H13 tool steel,” Metall. Res. Technol. 114, 206 (2017). https://doi.org/10.1051/metal/2016072

    Article  CAS  Google Scholar 

  14. Yo. Xie, G.-G. Cheng, L. Chen, Ya.-D. Zhang, and Q.-Zh. Yan, “Mechanism of generation of large (Ti,Nb,V)(C,N)-type precipitates in H13 + Nb tool steel,” Int. J. Miner., Metall., Mater. 23, 1264–1274 (2016). https://doi.org/10.1007/s12613-016-1348-3

    Article  CAS  Google Scholar 

  15. X.-L. Pan and M. Umemoto, “Precipitation characteristics and mechanism of vanadium carbides in a V-microalloyed medium-carbon steel,” Acta Metall. Sin. (Engl. Lett.) 31, 1197–1206 (2018). https://doi.org/10.1007/s40195-018-0775-8

  16. H. Sun, L.-P. Wu, J.-B. Xie, K.-N. Ai, Zh.-Q. Zeng, P. Shen, and J.-X. Fu, “Inclusions modification and improvement of machinability in a non-quenched and tempered steel with Mg treatment,” Metall. Res. Technol. 117, 208–218 (2020). https://doi.org/10.1051/metal/2020021

    Article  CAS  Google Scholar 

  17. X. Wang, G. Li, Y. Liu, F. Wang, and Q. Wang, “Cerium addition effect on modification of inclusions, primary carbides and microstructure refinement of H13 die steel,” ISIJ Int. 61, 1850–1859 (2021). https://doi.org/10.2355/isijinternational.ISIJINT-2020-739

    Article  CAS  Google Scholar 

  18. W. Nie, S. Yang, S. Yuan, and X. He, “Dissolving of Nb and Ti carbonitride precipitates in microalloyed steels,” Int. J. Miner., Metall. Mater. 10 (5), 78–80 (2003).

    CAS  Google Scholar 

  19. J. Lan, J. He, W. Ding, Q. Wang, and Y. Zhu, “Study on heterogeneous nuclei in cast H13 steel modified by rare earth,” J. Rare Earth: Engl. Ed. 19, 280–283 (2001). https://doi.org/10.1166/jnn.2001.062

    Article  CAS  Google Scholar 

  20. J. Zhu, G. T. Lin, Z. H. Zhang, and J. X. Xie, “The martensitic crystallography and strengthening mechanisms of ultra-high strength rare earth H13 steel,” Mater. Sci. Eng., A 797, 140139 (2020). https://doi.org/10.1016/j.msea.2020.140139

    Article  CAS  Google Scholar 

  21. X. X. Huang, Principle for Ferrous Metallurgy (Metallurgical Industry Press, 2003).

    Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (grant no. 52074179) and National Natural Science Foundation of China (Grant no. 52104335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Fu.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dengping Ji, Wang, Y., Zhu, H. et al. Precipitation Behavior of Primary Carbide in H13 Bloom Die Steel. Phys. Metals Metallogr. 124, 1482–1491 (2023). https://doi.org/10.1134/S0031918X23600902

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600902

Keywords:

Navigation