Skip to main content
Log in

The Effect of Thermodeformation Treatment on the Structure and Strengthening of the Al–7.1% Zn–2.8% Mg–1.4% Ni–1.1% Fe Alloy Produced via Casting in an Electromagnetic Crystallizer

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A calculation technique (Thermo-Calc software code) and experimental methods (scanning and transmission electron microscopy and X-ray spectral analysis) have been used to study the effect of thermodeformation treatment on the structure and strengthening of the Al–7.1% Zn–2.8% Mg–1.4% Ni–1.1% Fe alloy produced via casting in an electromagnetic crystallizer (EMC). It has been shown that at a cooling rate higher than 103 K/s, the entire amount of iron, which exceeds its content in the grade AZ6NF alloy (GOST 4784–2019) by two times, is bound into eutectic inclusions of the Al9FeNi phase of a submicron size. The combination of high hardness (more than 190 HV) and ductility indicates the advantages of applying the EMC technology to this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. J. E. Hatch, Aluminum: Properties and Physical Metallurgy (American Society for Metals, Ohio, 1984).

    Google Scholar 

  2. I. Polmear, D. StJohn, J. F. Nie, and M. Qian, “Physical metallurgy of aluminium alloys,” in Light Alloys, 5th ed. (Elsevier, London, 2017), pp. 31–107.

    Google Scholar 

  3. M. Glazoff, A. Khvan, V. Zolotorevsky, N. Belov, and A. Dinsdale, Casting Aluminum Alloys: Their Physical and Mechanical Metallurgy, 2nd ed. (Elsevier, 2018).

    Google Scholar 

  4. L. F. Mondolfo, Aluminium Alloys: Structure and Properties (Butterworths, London, 1976), pp. 806–841.

    Google Scholar 

  5. GOST (State Standard) 4784-2019: Aluminium and wrought aluminium alloys. Grades, 2019.

  6. Y. N. Mansurov and J. U. Rakhmonov, “Analysis of the phase composition and the structure of aluminum alloys with increased content of impurities,” Non-Ferrous Metals 45 (2), 37–42 (2018). https://doi.org/10.17580/nfm.2018.02.07

    Article  Google Scholar 

  7. M. Zhang, T. Liu, C. He, J. Ding, E. Liu, C. Shi, J. Li, and N. Zhao, “Evolution of microstructure and properties of Al–Zn–Mg–Cu–Sc–Zr alloy during aging treatment,” J. Alloys Compd. 658, 946–951 (2016). https://doi.org/10.1016/j.jallcom.2015.10.296

    Article  CAS  Google Scholar 

  8. W. Yang, Sh. Ji, Q. Zhang, and M. Wang, “Investigation of mechanical and corrosion properties of an Al–Zn–Mg–Cu alloy under various ageing conditions and interface analysis of η′ precipitate,” Mater. Des. 85, 752–761 (2015). https://doi.org/10.1016/j.matdes.2015.06.183

    Article  CAS  Google Scholar 

  9. Q. Zhu, L. Cao, X. Wu, Ya. Zou, and M. J. Couper, “Effect of Ag on age-hardening response of Al–Zn–Mg–Cu alloys,” Mater. Sci. Eng., A 754, 265–268 (2019). https://doi.org/10.1016/j.msea.2019.03.090

    Article  CAS  Google Scholar 

  10. A. Ghosh, M. Ghosh, and R. Kalsar, “Influence of homogenization time on evolution of eutectic phases, dispersoid behaviour and crystallographic texture for Al–Zn–Mg–Cu–Ag alloy,” J. Alloys Compd. 802, 276–289 (2019). https://doi.org/10.1016/j.jallcom.2019.06.091

    Article  CAS  Google Scholar 

  11. R. O. Vakhromov, E. A. Tkachenko, and O. I. Popova, “Influence of the main alloyng elements, microadditives and impurities on the properties of forging alloys of Al–Zn–Mg–Cu system,” Tsvetn. Met., No. 5, 61–65 (2013).

  12. T. Ohira and T. Kishi, “Effect of iron content on fracture toughness and cracking processes in high strength Al–Zn–Mg–Cu alloy,” Mater. Sci. Eng. 78, 9–19 (1986). https://doi.org/10.1016/0025-5416(86)90075-3

    Article  CAS  Google Scholar 

  13. V. I. Dobatkin, V. I. Elagin, and V. M. Fedorov, Rapidly Crystallized Aluminum Alloys (VILS, Moscow, 1995).

    Google Scholar 

  14. A. A. Avdulov, N. V. Sergeev, I. S. Gudkov, and G. P. Usynina, “Distinctive features of structure and properties of elongated small cross-section ingots of aluminum alloys casted in electromagnetic mold,” Tsvetn. Metall., No. 7, 73–77 (2017). https://doi.org/10.17580/tsm.2017.07.12

  15. M. V. Pervukhin, V. N. Timofeev, G. P. Usynina, N. V. Sergeev, M. M. Motkov, and I. S. Gudkov, “Mathematical modeling of MHD processes in the casting of aluminum alloys in electromagnetic mold,” IOP Conf. Ser.: Mater. Sci. Eng. 643, 012063 (2019). https://doi.org/10.1088/1757-899X/643/1/012063

  16. D. Vojtěch, J. Šerák, O. Eckert, T. Kubatík, Č. Barta, Č. Barta, and E. Tagiev, High strength Al–Zn–Mg–Cu–Ni–Si alloy with improved casting properties, Mater. Sci. Technol. 19, 757–761 (2003).https://doi.org/10.1179/026708303225002163

    Article  CAS  Google Scholar 

  17. S. B. Sidelnikov, D. S. Voroshilov, M. M. Motkov, V. N. Timofeev, I. L. Konstantinov, N. N. Dovzhenko, E. S. Lopatina, V. M. Bespalov, R. E. Sokolov, Yu. Mansurov, and M. V. Voroshilova, “Investigation structure and properties of wire from the alloy of AL-REM system obtained with the application of casting in the electromagnetic mold, combined rolling-extruding, and drawing,” Int. J. Adv. Manufact. Technol. 114, 2633–2649 (2021). https://doi.org/10.1007/s00170-021-07054-x

    Article  Google Scholar 

  18. V. N. Timofeev, M. V. Pervukhin, N. V. Sergeev, N. V. Timofeev, M. Yu. Khatsayuk, and P. A. Khomenkov, Method for continuous casting of an ingot and a melting and casting installation for its implementation, RF Patent No. 2745520, Byull Izobret., No. 9 (2021).

  19. N. O. Korotkova, N. A. Belov, V. N. Timofeev, M. M. Motkov, and S. O. Cherkasov, “Influence of heat treatment on the structure and properties of an Al-7% REM conductive aluminum alloy casted in an electromagnetic crystallizer,” Phys. Met. Metallogr. 121, 173–179 (2020). https://doi.org/10.1134/S0031918X2002009X

    Article  CAS  Google Scholar 

  20. N. Belov, T. Akopyan, N. Korotkova, M. Murashkin, V. Timofeev, and A. Fortuna, “Structure and properties of heat resistant Ca and Zr containing wire aluminum alloy manufactured by electromagnetic casting,” Metals 122, 725–730 (2021). https://doi.org/10.3390/met11020236

    Article  CAS  Google Scholar 

  21. N. A. Belov, T. K. Akopyan, N. O. Korotkova, P. K. Shurkin, V. N. Timofeev, O. A. Raznitsyn, and T. A. Sviridova, “Structure and heat resistance of high strength Al–3.3% Cu–2.5% Mn–0.5% Zr (wt %) conductive wire alloy manufactured by electromagnetic casting,” J. Alloys Compd. 891, 161948 (2022). https://doi.org/10.1016/j.jallcom.2021.161948

    Article  CAS  Google Scholar 

  22. N. O. Korotkova, S. O. Cherkasov, V. N. Timofeev, and A. A. Aksenov, “Structure and properties of the Al–1% Ca–0.5% Fe–0.25% Si–0.5% Zr alloy produced via casting in an electromagnetic crystallizer,” Phys. Met. Metallogr. 122, 725–730 (2021). https://doi.org/10.1134/S0031918X21060065

    Article  CAS  Google Scholar 

  23. N. A. Belov, N. O. Korotkova, T. K. Akopyan, and V. N. Timofeev, “Structure and properties of Al–0.6% Zr–0.4% Fe–0.4% Si (wt %) wire alloy manufactured by electromagnetic casting,” JOM 72, 1561–1570 (2020). https://doi.org/10.1007/s11837-019-03875-0

    Article  CAS  Google Scholar 

  24. N. A. Belov, “Sparingly alloyed high-strength aluminum alloys: Principles of optimization of phase composition,” Met. Sci. Heat Treat. 53, 420–427 (2012). https://doi.org/10.1007/s11041-012-9409-3

    Article  CAS  Google Scholar 

  25. T. K. Akopyan and N. A. Belov, “Approaches to the design of the new high-strength casting aluminum alloys of 7xxx series with high iron content,” Non-Ferrous Met., No. 1, 20–27 (2016). https://doi.org/10.17580/nfm.2016.01.04

  26. N. A. Belov and A. N. Alabin, “Use of multicomponent phase diagrams for designing high strength casting aluminum alloys,” Mater. Sci. Forum 794, 909–914 (2014). https://doi.org/10.4028/www.scientific.net/MSF.794-796.909

  27. T. K. Akopyan, N. A. Belov, A. N. Alabin, and G. S. Zlobin, “Calculation-experimental study of the aging of casting high-strength Al–Zn–Mg–(Cu)–Ni–Fe aluminum alloys, Russ. Metall. 2014, 60–65 (2014). https://doi.org/10.1134/S0036029514010029

    Article  Google Scholar 

  28. N. A. Belov, Phase Composition of Industrial and Perspective Aluminum Alloys (Mosk. Inst. Stalei i Splavov, Moscow, 2010).

    Google Scholar 

  29. ThermoCalc, 2022. http://www.thermocalc.com. Cited August 11, 2022.

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-19-00128, https://rscf.ru/project/22-19-00128/, Siberian Federal University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Belov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, N.A., Timofeev, V.N., Cherkasov, S.O. et al. The Effect of Thermodeformation Treatment on the Structure and Strengthening of the Al–7.1% Zn–2.8% Mg–1.4% Ni–1.1% Fe Alloy Produced via Casting in an Electromagnetic Crystallizer. Phys. Metals Metallogr. 124, 414–421 (2023). https://doi.org/10.1134/S0031918X23600306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600306

Keywords:

Navigation