Skip to main content
Log in

Evaluating the Spatial and Size Distributions of Flat Precipitates in Diffusion-Controlled Precipitation Processes

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This study presents a modeling of spatial and size distributions of precipitates in diffusion-controlled phase transitions in metals. These data are essential for estimating the probability of critical cluster formation, leading to brittle fracture. The practical significance of the current research includes demonstrated ability to estimate the probability of zirconium hydrogen embrittlement based on obtained stochastic characteristics of δ-hydrides (ZrH1.6) morphology. The model includes a statistical analysis of serial calculations based on classical heterogeneous nucleation and growth of plate-shaped inclusions in 3D domain. The approach was verified with experimental data in modeling of θ’-phase (Al2Cu) nucleation and growth in Al–4 wt % Cu alloy. Also the paper includes an appendix with an analytical approach for evaluating the distribution function of inclusions in cluster length and mean projection length, which is the morphology metric correlating with mechanical properties. This analytical solution was also used for the verification of the numerical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. The notation “radial” arises from the geometry of tubular specimens. Hydrides are classified as radial or tangential according to their orientation in the cross-section perpendicular to the main axis of cladding tube.

  2. Calculated scenario: hydrogen content equal to 330 ppm, cooling from 400 to 200°C with cooling rate 3°C/min. Parameter PX used in the analytical solution equal to PX = 0.7544.

REFERENCES

  1. A. T. Motta, L. Capolungo, L.-Q. Chen, M. N. Cinbiz, M. R. Daymond, D. A. Koss, E. Lacroix, G. Pastore, P.-C. A. Simon, M. R. Tonks, B. D. Wirth, and M. A. Zikry, “Hydrogen in zirconium alloys: A review,” J. Nucl. Mater. 518, 440–460 (2019). https://doi.org/10.1016/j.jnucmat.2019.02.042

    Article  ADS  CAS  Google Scholar 

  2. H.-H. Hsu and L.-W. Tsay, “Fracture properties of hydrided Zircaloy-4 cladding in recrystallization and stress-relief anneal conditions,” J. Nucl. Mater. 422, 116–123 (2012). https://doi.org/10.1016/j.jnucmat.2011.12.032

    Article  ADS  CAS  Google Scholar 

  3. H.-H. Hsu and L.-W. Tsay, “Effect of hydride orientation on fracture toughness of Zircaloy-4 cladding,” J. Nucl. Mater. 408, 67–72 (2011). https://doi.org/10.1016/j.jnucmat.2010.10.068

    Article  ADS  CAS  Google Scholar 

  4. J. F. Nie, “Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys,” Scr. Mater. 48, 1009–1015 (2003). https://doi.org/10.1016/s1359-6462(02)00497-9

    Article  CAS  Google Scholar 

  5. A. Assadiki, V. A. Esin, R. Martinez, W. J. Poole, and G. Cailletaud, “Modelling precipitation hardening in an A356+0.5 wt%Cu cast aluminum alloy,” Mater. Sci. Eng., A 819, 141450 (2021). https://doi.org/10.1016/j.msea.2021.141450

    Article  CAS  Google Scholar 

  6. R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fundam. 1, 187–191 (1962). https://doi.org/10.1021/i160003a005

    Article  CAS  Google Scholar 

  7. E. Yamada and T. Ota, “Effective thermal conductivity of dispersed materials,” Wärme- und Stoffübertragung 13, 27–37 (1980). https://doi.org/10.1007/bf00997630

  8. D. Zhu, W. Yu, H. Du, L. Chen, Ya. Li, and H. Xie, “Thermal conductivity of composite materials containing copper nanowires,” J. Nanomaterials 2016, 3089716 (2016). https://doi.org/10.1155/2016/3089716

    Article  CAS  Google Scholar 

  9. J. Bai, C. Prioul, and D. François, “Hydride embrittlement in Zircaloy-4 plate: Part I. Influence of microstructure on the hydride embrittlement in Zircaloy-4 at 20°C and 350°C,” Metall. Mater. Trans. A 25, 1185–1197 (1994). https://doi.org/10.1007/bf02652293

    Article  Google Scholar 

  10. T. Kubo, Y. Kobayashi, and H. Uchikoshi, “Determination of fracture strength of δ-zirconium hydrides embedded in zirconium matrix at high temperatures,” J. Nucl. Mater. 435, 222–230 (2013). https://doi.org/10.1016/j.jnucmat.2012.12.045

    Article  ADS  CAS  Google Scholar 

  11. M. C. Billone, T. A. Burtseva, and R. E. Einziger, “Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions,” J. Nucl. Mater. 433, 431–448 (2013). https://doi.org/10.1016/j.jnucmat.2012.10.002

    Article  ADS  CAS  Google Scholar 

  12. J. L. Murray, “The aluminium–copper system,” Int. Met. Rev. 30, 211–234 (1985). https://doi.org/10.1179/imtr.1985.30.1.211

    Article  CAS  Google Scholar 

  13. P. Merle and F. Fouquet, “Coarsening of θ′ plates in Al–Cu alloys—I. Experimental determination of mechanisms,” Acta Metall. 29, 1919–1927 (1981). https://doi.org/10.1016/0001-6160(81)90029-8

    Article  CAS  Google Scholar 

  14. Yi. Chen, Z. Zhang, Z. Chen, A. Tsalanidis, M. Weyland, S. Findlay, L. J. Allen, J. Li, N. V. Medhekar, and L. Bourgeois, “The enhanced theta-prime (θ′) precipitation in an Al–Cu alloy with trace Au additions,” Acta Mater. 125, 340–350 (2017). https://doi.org/10.1016/j.actamat.2016.12.012

    Article  ADS  CAS  Google Scholar 

  15. Yu. Zheng, Yi. Liu, N. Wilson, S. Liu, X. Zhao, H. Chen, J. Li, Z. Zheng, L. Bourgeois, and J. Nie, “Solute segregation induced sandwich structure in Al–Cu(–Au) alloys,” Acta Mater. 184, 17–29 (2020). https://doi.org/10.1016/j.actamat.2019.11.011

    Article  ADS  CAS  Google Scholar 

  16. V. Vaithyanathan, C. Wolverton, and L. Chen, “Multiscale modeling of θ′ precipitation in Al–Cu binary alloys,” Acta Mater. 52, 2973–2987 (2004). https://doi.org/10.1016/j.actamat.2004.03.001

    Article  ADS  CAS  Google Scholar 

  17. K. Kim, A. Roy, M. P. Gururajan, C. Wolverton, and P. W. Voorhees, “First-principles/Phase-field modeling of θ′ precipitation in Al–Cu alloys,” Acta Mater. 140, 344–354 (2017). https://doi.org/10.1016/j.actamat.2017.08.046

    Article  ADS  CAS  Google Scholar 

  18. P. Heugue, D. Larouche, F. Breton, R. Martinez, and X. G. Chen, “Evaluation of the growth kinetics of θ′ and θ-Al2Cu precipitates in a binary Al–3.5 Wt Pct Cu alloy,” Metall. Mater. Trans. A 50, 3048–3060 (2019). https://doi.org/10.1007/s11661-019-05227-8

    Article  CAS  Google Scholar 

  19. S. Y. Hu, J. Murray, H. Weiland, Z. K. Liu, and L. Q. Chen, “Thermodynamic description and growth kinetics of stoichiometric precipitates in the phase-field approach,” Calphad 31, 303–312 (2007). https://doi.org/10.1016/j.calphad.2006.08.005

    Article  CAS  Google Scholar 

  20. T. Naseri, D. Larouche, P. Heugue, R. Martinez, F. Breton, and D. Massinon, “Multiphase modelling of the growth kinetics of precipitates in Al–Cu alloys during artificial aging,” Philos. Mag. 101, 1–24 (2021). https://doi.org/10.1080/14786435.2020.1808255

    Article  ADS  CAS  Google Scholar 

  21. A. Guinier, “Structure of age-hardened aluminium–copper alloys,” Nature 142, 569–570 (1938). https://doi.org/10.1038/142569b0

    Article  ADS  CAS  Google Scholar 

  22. G. D. Preston, “Structure of age-hardened aluminium–copper alloys,” Nature 142, 570–570 (1938). https://doi.org/10.1038/142570a0

    Article  ADS  CAS  Google Scholar 

  23. M. P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking, Engineering Materials (Springer, London, 2012). https://doi.org/10.1007/978-1-4471-4195-2

  24. M. P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components - Hydride Reorientation (ANT Int., Tollered, Sweden, 2018).

    Google Scholar 

  25. Z. Wang, B. Zhou, W. Zhu, B. Wen, M. Yao, Q. Li, L. Wu, J. Zhang, and Z. Fang, “TEM study on the initial oxidation of Zircaloy-4 thin foil specimens heated in a low vacuum air condition at 280–300 °C,” J. Nucl. Mater. 487, 192–199 (2017). https://doi.org/10.1016/j.jnucmat.2017.02.019

    Article  ADS  CAS  Google Scholar 

  26. M. P. Puls, “Fracture initiation at hydrides in zirconium,” Metall. Trans. A 22, 2327–2337 (1991). https://doi.org/10.1007/bf02664999

    Article  Google Scholar 

  27. M. Nakatsuka and S. Yagnik, “Effect of hydrides on mechanical properties and failure morphology of BWR fuel cladding at very high strain rate,” J. ASTM Int. 8, 102954 (2010). https://doi.org/10.1520/JAI102954

    Article  CAS  Google Scholar 

  28. L. G. Bell and R. G. Duncan, Hydride Orientation in Zr–2.5% Nb; How It Is Affected by Stress, Temperature and Heat Treatment (Pinawa, Manitoba, Canada, 1975).

    Google Scholar 

  29. M. Aomi, T. Baba, T. Miyashita, K. Kamimura, T. Yasuda, Ya. Shinohara, T. Takeda, M. Limback, B. Kammenzind, and S. Dean, “Evaluation of hydride reorientation behavior and mechanical properties for high-burnup fuel-cladding tubes in interim dry storage,” J. ASTM Int. 5, 101262 (2008). https://doi.org/10.1520/jai101262

    Article  Google Scholar 

  30. S.-J. Min, J.-J. Won, and K.-T. Kim, “Terminal cool-down temperature-dependent hydride reorientations in Zr–Nb alloy claddings under dry storage conditions,” J. Nucl. Mater. 448, 172–183 (2014). https://doi.org/10.1016/j.jnucmat.2014.02.007

    Article  ADS  CAS  Google Scholar 

  31. P.-C. A. Simon, C. Frank, L.-Q. Chen, M. R. Daymond, M. R. Tonks, and A. T. Motta, “Quantifying the effect of hydride microstructure on zirconium alloys embrittlement using image analysis,” J. Nucl. Mater. 547, 152817 (2021). https://doi.org/10.1016/j.jnucmat.2021.152817

    Article  CAS  Google Scholar 

  32. R. H. Doremus, “Fracture statistics: A comparison of the normal, Weibull, and Type I extreme value distributions,” J. Appl. Phys. 54, 193–198 (1983). https://doi.org/10.1063/1.331731

    Article  ADS  Google Scholar 

  33. G. M. Han, Y. F. Zhao, C. B. Zhou, D.-Ye Lin, X. Y. Zhu, J. Zhang, S. Y. Hu, and H. F. Song, “Phase-field modeling of stacking structure formation and transition of δ-hydride precipitates in zirconium,” Acta Mater. 165, 528–546 (2019). https://doi.org/10.1016/j.actamat.2018.12.009

    Article  ADS  CAS  Google Scholar 

  34. X. Q. Ma, S. Q. Shi, C. H. Woo, and L. Q. Chen, “Simulation of γ-hydride precipitation in bi-crystalline zirconium under uniformly applied load,” Mater. Sci. Eng., A 334, 6–10 (2002). https://doi.org/10.1016/s0921-5093(01)01770-1

    Article  Google Scholar 

  35. Y. U. Wang, Y. M. Jin, A. M. Cuitiño, and A. G. Khachaturyan, “Nanoscale phase field microelasticity theory of dislocations: Model and 3D simulations,” Acta Mater. 49, 1847–1857 (2001). https://doi.org/10.1016/s1359-6454(01)00075-1

    Article  ADS  CAS  Google Scholar 

  36. D. Xu and H. Xiao, “Cluster dynamics model for the hydride precipitation kinetics in zirconium cladding,” in 18th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors, Ed. by J. Jackson, D. Paraventi, and M. Wright, The Minerals, Metals & Materials Series (Springer, Cham, 2019), pp. 1759–1768. https://doi.org/10.1007/978-3-030-04639-2_118

  37. A. Aryanfar, J. Thomas, A. Van Der Ven, D. Xu, M. Youssef, J. Yang, B. Yildiz, and J. Marian, “Integrated computational modeling of water side corrosion in zirconium metal clad under nominal LWR operating conditions,” JOM 68, 2900–2911 (2016). https://doi.org/10.1007/s11837-016-2129-1

    Article  CAS  Google Scholar 

  38. A. Toghraee, J. Bair, and M. Asle Zaeem, “Effects of applied load on formation and reorientation of zirconium hydrides: A multiphase field modeling study,” Comput. Mater. Sci. 192, 110367 (2021). https://doi.org/10.1016/j.commatsci.2021.110367

    Article  CAS  Google Scholar 

  39. W. Shin and K. Chang, “Phase-field modeling of hydride reorientation in zirconium cladding materials under applied stress,” Comput. Mater. Sci. 182, 109775 (2020). https://doi.org/10.1016/j.commatsci.2020.109775

    Article  CAS  Google Scholar 

  40. T. W. Heo, K. B. Colas, A. T. Motta, and L.-Q. Chen, “A phase-field model for hydride formation in polycrystalline metals: Application to δ-hydride in zirconium alloys,” Acta Mater. 181, 262–277 (2019). https://doi.org/10.1016/j.actamat.2019.09.047

    Article  ADS  CAS  Google Scholar 

  41. H. Tummala, L. Capolungo, and C. Tomé, “Quantifying the stress state in the vicinity of a δ-hydride in α-zirconium,” J. Nucl. Mater. 511, 406–416 (2018). https://doi.org/10.1016/j.jnucmat.2018.08.050

    Article  ADS  CAS  Google Scholar 

  42. J. Bair, M. A. Zaeem, and M. Tonks, “A phase-field model to study the effects of temperature change on shape evolution of γ-hydrides in zirconium,” J. Phys. D: Appl. Phys. 49, 405302 (2016). https://doi.org/10.1088/0022-3727/49/40/405302

    Article  CAS  Google Scholar 

  43. M. Kolesnik, T. Aliev, and V. Likhanskii, “Modeling of size, aspect ratio, and orientation of flattened precipitates in the context of Zr–H system under external stress,” Comput. Mater. Sci. 189, 110260 (2021). https://doi.org/10.1016/j.commatsci.2020.110260

    Article  CAS  Google Scholar 

  44. T. Aliev and M. Kolesnik, “Stress concentrator at the plate-like inclusion tip as an enhancement factor of diffusion flux,” J. Phys. Commun. 5, 105005 (2021). https://doi.org/10.1088/2399-6528/ac2a97

    Article  CAS  Google Scholar 

  45. D. A. Porter, K. E. Easterling, and M. Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed. (CRC Press, Boca Raton, Fla., 2009). https://doi.org/10.1201/9781003011804

    Book  Google Scholar 

  46. H. I. Aaronson, M. Enomoto, and J. K. Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys (CRC Press, Boca Raton, Fla., 2010). https://doi.org/10.1201/b15829

    Book  Google Scholar 

  47. R. P. Sear, “Nucleation: Theory and applications to protein solutions and colloidal suspensions,” J. Phys.: Condens. Matter 19, 033101 (2007). https://doi.org/10.1088/0953-8984/19/3/033101

    Article  ADS  CAS  Google Scholar 

  48. V. V. Bulatov, B. W. Reed, and M. Kumar, “Grain boundary energy function for fcc metals,” Acta Mater. 65, 161–175 (2014). https://doi.org/10.1016/j.actamat.2013.10.057

    Article  ADS  CAS  Google Scholar 

  49. H. Zheng, X. Li, R. Tran, C. Chen, M. Horton, D. Winston, K. Persson, and S. Ong, “Grain boundary properties of elemental metals,” Acta Mater. 186, 40–49 (2020). https://doi.org/10.1016/j.actamat.2019.12.030

    Article  ADS  CAS  Google Scholar 

  50. K. Une, K. Nogita, S. Ishimoto, and K. Ogata, “Crystallography of zirconium hydrides in recrystallized Zircaloy-2 fuel cladding by electron backscatter diffraction,” J. Nucl. Sci. Technol. 41, 731–740 (2004). https://doi.org/10.1080/18811248.2004.9715540

    Article  CAS  Google Scholar 

  51. J. S. Bradbrook, G. W. Lorimer, and N. Ridley, “The precipitation of zirconium hydride in zirconium and Zircaloy-2,” J. Nucl. Mater. 42, 142–160 (1972). https://doi.org/10.1016/0022-3115(72)90021-9

    Article  ADS  CAS  Google Scholar 

  52. N. A. P. Kiran Kumar, J. A. Szpunar, and Z. He, “Preferential precipitation of hydrides in textured Zircaloy-4 sheets,” J. Nucl. Mater. 403, 101–107 (2010). https://doi.org/10.1016/j.jnucmat.2010.06.005

    Article  ADS  CAS  Google Scholar 

  53. R. Martinez, D. Larouche, G. Cailletaud, I. Guillot, and D. Massinon, “Simulation of the concomitant process of nucleation-growth-coarsening of Al2Cu particles in a 319 foundry aluminum alloy,” Modell. Simul. Mater. Sci. Eng. 23, 045012 (2015). https://doi.org/10.1088/0965-0393/23/4/045012

    Article  ADS  CAS  Google Scholar 

  54. Yo. Du, Y. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Yo. Liu, Yu. He, and F.-Y. Xie, “Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation,” Mater. Sci. Eng., A 363, 140–151 (2003). https://doi.org/10.1016/s0921-5093(03)00624-5

    Article  Google Scholar 

  55. D. Y. Li and L. Q. Chen, “Computer simulation of stress-oriented nucleation and growth of θ′ precipitates in Al–Cu alloys,” Acta Mater. 46, 2573–2585 (1998). https://doi.org/10.1016/s1359-6454(97)00478-3

    Article  ADS  CAS  Google Scholar 

  56. ASM Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (ASM International, 1990). https://doi.org/10.31399/asm.hb.v02.9781627081627

    Book  Google Scholar 

  57. D. Hardie and M. W. Shanahan, “Stress reorientation of hydrides in zirconium−2.5% niobium,” J. Nucl. Mater. 55, 1–13 (1975). https://doi.org/10.1016/0022-3115(75)90132-4

    Article  ADS  CAS  Google Scholar 

  58. J. B. Bai, N. Ji, D. Gilbon, C. Prioul, and D. François, “Hydride embrittlement in Zircaloy-4 plate: Part II. Interaction between the tensile stress and the hydride morphology,” Metall. Mater. Trans. A 25, 1199–1208 (1994). https://doi.org/10.1007/bf02652294

    Article  Google Scholar 

  59. S.-J. Min, M.-S. Kim, and K.-T. Kim, “Cooling rate- and hydrogen content-dependent hydride reorientation and mechanical property degradation of Zr–Nb alloy claddings,” J. Nucl. Mater. 441, 306–314 (2013). https://doi.org/10.1016/j.jnucmat.2013.06.006

    Article  ADS  CAS  Google Scholar 

  60. O. Zanellato, M. Preuss, J. Buffiere, F. Ribeiro, A. Steuwer, J. Desquines, J. Andrieux, and B. Krebs, “Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4,” J. Nucl. Mater. 420, 537–547 (2012). https://doi.org/10.1016/j.jnucmat.2011.11.009

    Article  ADS  CAS  Google Scholar 

  61. A. Sawatzky, “The diffusion and solubility of hydrogen in the alpha phase of Zircaloy-2,” J. Nucl. Mater. 2, 62–68 (1960). https://doi.org/10.1016/0022-3115(60)90025-8

    Article  ADS  Google Scholar 

  62. H. Lee, K.-M. Kim, J.-S. Kim, and Yo.-S. Kim, “Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition,” Nucl. Eng. Technol. 52, 352–359 (2020). https://doi.org/10.1016/j.net.2019.07.032

    Article  CAS  Google Scholar 

  63. G.-Ya. Huang and B. D. Wirth, “First-principles study of interfacial energy between alpha-zirconium and zirconium hydride,” J. Appl. Phys. 126, 135105 (2019). https://doi.org/10.1063/1.5102176

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR within the framework of the project no. 19-32-60031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Kolesnik.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnik, M.Y., Aliev, T.N. Evaluating the Spatial and Size Distributions of Flat Precipitates in Diffusion-Controlled Precipitation Processes. Phys. Metals Metallogr. 124, 1414–1425 (2023). https://doi.org/10.1134/S0031918X22602074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22602074

Keywords:

Navigation