Skip to main content
Log in

Effect of Heat Treatment on Wire + Arc Additive Manufactured Aluminum 5356 Alloy: Mechanical Properties and Microstructure Correlation

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this work, the aluminum 5356 (Al5356) component was fabricated by Wire Arc Additive Manufacturing (WAAM) process and subjected to heat treatment at three different temperatures i.e., 450, 525, and 600°C. Detailed mechanical and microstructural characterization was performed on the as-fabricated and heat-treated samples to correlate the change in mechanical properties with its corresponding microstructure. The mechanical properties were estimated using the tensile and Rockwell hardness tester, and the microstructural characterization was performed using Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD) technique. The samples heat-treated at 450°C show superior strength (i.e. UTS 260 MPa) as compared to as-fabricated, heat-treated at 525 and 600°C due to the beneficial evolution of fine second phase particles after heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. T. A. Rodrigues, V. Duarte, R. M. Miranda, T. G. Santos, and J. P. Oliveira, “Current status and perspectives on wire and arc additive manufacturing (WAAM),” Materials 12, 1121 (2019). https://doi.org/10.3390/ma12071121

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  2. M. Köhler, S. Fiebig, J. Hensel, and K. Dilger, “Wire and arc additive manufacturing of aluminum components,” Metals 9, 608 (2019). https://doi.org/10.3390/met9050608

    Article  CAS  Google Scholar 

  3. W. E. Frazier, “Metal additive manufacturing: A review,” J. Mater. Eng. Perform. 23, 1917–1928 (2014). https://doi.org/10.1007/s11665-014-0958-z

    Article  CAS  Google Scholar 

  4. K. S. Derekar, “A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium,” Mater. Sci. Technol. 34, 895–916 (2018). https://doi.org/10.1080/02670836.2018.1455012

    Article  ADS  CAS  Google Scholar 

  5. J. R. Davis, “Introduction to aluminum and aluminum alloys,” in Metals Handbook Desk Edition (ASM International, 2001), pp. 417–423. https://doi.org/10.31399/asm.hb.mhde2.a0003121

    Book  Google Scholar 

  6. J. G. Kaufman and E. L. Rooy, Aluminum Alloy Castings (ASM International, 2004). https://doi.org/10.31399/asm.tb.aacppa.9781627083355

    Book  Google Scholar 

  7. S. Li, L.-J. Zhang, J. Ning, X. Wang, G.-F. Zhang, J.‑X. Zhang, S.-J. Na, and B. Fatemeh, “Comparative study on the microstructures and properties of wire+arc additively manufactured 5356 aluminium alloy with argon and nitrogen as the shielding gas,” Addit. Manuf. 34, 101206 (2020). https://doi.org/10.1016/j.addma.2020.101206

    Article  CAS  Google Scholar 

  8. G. Saad, S. A. Fayek, A. Fawzy, H. N. Soliman, and E. Nassr, “Work hardening characteristics of gamma-ray irradiated Al-5356 alloy,” Mater. Sci. Eng., A 607, 132–137 (2014). https://doi.org/10.1016/j.msea.2014.03.137

    Article  CAS  Google Scholar 

  9. S. Sanamar, H. Brokmeier, and N. Schell, “Phase evolution of Al–Mg metal matrix composites during low temperature annealing at 200°C and 250°C,” Intermetallics 124, 106862 (2020). https://doi.org/10.1016/j.intermet.2020.106862

    Article  CAS  Google Scholar 

  10. J. Wang, Q. Shen, X. Kong, and X. Chen, “Arc additively manufactured 5356 aluminum alloy with cable-type welding wire: Microstructure and Mechanical Properties,” J. Mater. Eng. Perform. 30, 7472–7478 (2021). https://doi.org/10.1007/s11665-021-05905-y

    Article  CAS  Google Scholar 

  11. C. Li, H. Gu, W. Wang, S. Wang, L. Ren, Z. Wang, Z. Ming, and Yu. Zhai, “Effect of heat input on formability, microstructure, and properties of Al–7Si–0.6Mg alloys deposited by CMT-WAAM process,” Appl. Sci. 10, 70 (2019). https://doi.org/10.3390/app10010070

    Article  ADS  CAS  Google Scholar 

  12. D. Su, J. Zhang, and B. Wang, “The microstructure and weldability in welded joints for AA 5356 aluminum alloy after adding modified trace amounts of Sc and Zr,” J. Manuf. Processes 57, 488–498 (2020). https://doi.org/10.1016/j.jmapro.2020.07.017

    Article  Google Scholar 

  13. C. Ma, Yu. Yan, Z. Yan, Yo. Liu, X. Wu, D. Li, L. Zhao, P. Liu, and H. Jin, “Investigation of bypass-coupled double-pulsed directed energy deposition of Al–Mg alloys,” Addit. Manuf. 58, 103058 (2022). https://doi.org/10.1016/j.addma.2022.103058

    Article  CAS  Google Scholar 

  14. G. Saad, S. A. Fayek, A. Fawzy, H. N. Soliman, and E. Nassr, “Serrated flow and work hardening characteristics of Al-5356 alloy,” J. Alloys Compd. 502, 139–146 (2010). https://doi.org/10.1016/j.jallcom.2010.04.119

    Article  CAS  Google Scholar 

  15. Ya. Geng, I. Panchenko, X. Chen, Yu. Ivanov, and S. Konovalov, “Wire arc additive manufacturing Al–5.0 Mg alloy: Microstructures and phase composition,” Mater. Charact. 187, 111875 (2022). https://doi.org/10.1016/j.matchar.2022.111875

    Article  CAS  Google Scholar 

  16. M. Köhler, J. Hensel, and K. Dilger, “Effects of thermal cycling on wire and arc additive manufacturing of Al-5356 components,” Metals 10, 952 (2020). https://doi.org/10.3390/met10070952

    Article  CAS  Google Scholar 

  17. ESAB. Aluminium 5356 Wires Autrod.

  18. M/s Kemppi. X8 MIG Welder (2022).

  19. ASTM E8/E8M standard test methods for tension testing of metallic materials. Annu. B. ASTM Stand. 4 ASTM E8 (2010).

  20. Standard Test Methods for Rockwell Hardness of Metallic Materials. ASTM Int. ASTM E18 (2015).

  21. S. Scudino, G. Liu, M. Sakaliyska, K. B. Surreddi, and J. Eckert, “Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties,” Acta Mater. 57, 4529–4538 (2009). https://doi.org/10.1016/j.actamat.2009.06.017

    Article  ADS  CAS  Google Scholar 

  22. A. Ahmed, S. Akl, and A. S. Hassanien, Int. J. Adv. Res. 2 (11), 1–9 (2014). https://www.journalijar.com/ uploads/838_IJAR-4360.pdf.

    Google Scholar 

  23. J. L. Murray, “The Al−Mg (aluminum−magnesium) system,” J. Phase Equilib. 3, 60–74 (1982). https://doi.org/10.1007/bf02873413

    Article  Google Scholar 

  24. S. Bannour, K. Abderrazak, S. Mattei, J. E. Masse, M. Autric, and H. Mhiri, “The influence of position in overlap joints of Mg and Al alloys on microstructure and hardness of laser welds,” J. Laser Appl. 25, 032001 (2013). https://doi.org/10.2351/1.4792615

    Article  ADS  CAS  Google Scholar 

  25. W. Zuo, L. Ma, Yu. Lu, S. Li, Z. Ji, and M. Ding, “Effects of Solution treatment temperatures on microstructure and mechanical properties of TIG–MIG hybrid arc additive manufactured 5356 aluminum alloy,” Met. Mater. Int. 24, 1346–1358 (2018). https://doi.org/10.1007/s12540-018-0142-3

    Article  Google Scholar 

  26. Ch. Su, X. Chen, C. Gao, and Ya. Wang, “Effect of heat input on microstructure and mechanical properties of Al–Mg alloys fabricated by WAAM,” Appl. Surf. Sci. 486, 431–440 (2019). https://doi.org/10.1016/j.apsusc.2019.04.255

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the SRM Institute of Science and Technology (SRM IST) for their support. We acknowledge the National facility for OIM and Texture IIT Bombay for EBSD measurements. We thank Mr. Manavallan, Metallurgy Lab, SRM IST for the help in optical microscopy.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Harshavardhana.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshavardhana, N., Sivam, S.P., Savio, R.R. et al. Effect of Heat Treatment on Wire + Arc Additive Manufactured Aluminum 5356 Alloy: Mechanical Properties and Microstructure Correlation. Phys. Metals Metallogr. 124, 1845–1855 (2023). https://doi.org/10.1134/S0031918X22601846

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601846

Keywords:

Navigation