Skip to main content
Log in

Surface Characteristics, Microstructural, and Tribological Behavior of Wire Arc Additive Manufactured Aluminum-5356 Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, aluminum-5356 alloy was deposited using wire arc additive manufacturing (WAAM) equipped with a robotic gas metal arc welding setup (GMAW). The morphology, microhardness, microstructure, and tribological features of the WAAM-deposited specimen were studied in detail. The results show that the microhardness of the WAAM-deposited Al-5356 alloy increased from 57 to 81 HV from the top to the bottom portion. The wear resistance of the deposited component also increased from the top to the bottom portion. Moreover, the microstructure and mechanical properties of the deposited wall were investigated on deposited specimens with selected parameters from the top to bottom area of specimens, respectively. The detailed study shows the understanding of the effect of variation in current on the surface morphology, microstructure, hardness, and wear behavior of different areas from top to bottom of the deposited multilayer components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  1. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. de Wilson-Heid, A. De, and W. Zhang, Additive Manufacturing of Metallic Components-Process, Structure and Properties, Prog. Mater. Sci., 2018, 92, p 112–224.

    Article  CAS  Google Scholar 

  2. J. Donoghue, A.A. Antonysamy, F. Martina, P.A. Colegrove, S.W. Williams, and P.B. Prangnell, The Effectiveness of Combining Rolling Deformation with Wire-Arc Additive Manufacture on β-Grain Refinement and Texture Modification in Ti-6Al-4V, Mater. Charact., 2016, 114, p 103–114. https://doi.org/10.1016/j.matchar.2016.02.001

    Article  CAS  Google Scholar 

  3. B.A. Szost, S. Terzi, F. Martina, D. Boisselier, A. Prytuliak, T. Pirling, M. Hofmann, and D.J. Jarvis, A Comparative Study of Additive Manufacturing Techniques: Residual Stress and Microstructural Analysis of CLAD and WAAM Printed Ti–6Al–4V Components, Mater. Des., 2016, 89, p 559–567. https://doi.org/10.1016/j.matdes.2015.09.115

    Article  CAS  Google Scholar 

  4. A. Gomez Ortega, L. Corona Galvan, F. Deschaux-Beaume, B. Mezrag, and S. Rouquette, Effect of Process Parameters on the Quality of Aluminium Alloy Al5Si Deposits in Wire and Arc Additive Manufacturing Using a Cold Metal Transfer Process, Sci. Technol. Weld. Join., 2018, 23(4), p 316–332. https://doi.org/10.1080/13621718.2017.1388995

    Article  CAS  Google Scholar 

  5. X. Xu, J. Ding, S. Ganguly, C. Diao, and S. Williams, Oxide Accumulation Effects on Wire+Arc Layer-by-Layer Additive Manufacture Process, J. Mater. Process. Technol., 2018, 252, p 739–750. https://doi.org/10.1016/j.jmatprotec.2017.10.030

    Article  CAS  Google Scholar 

  6. C.V. Haden, G. Zeng, F.M. Carter, C. Ruhl, B.A. Krick, and D.G. Harlow, Wire and Arc Additive Manufactured Steel: Tensile and Wear Properties, Addit. Manuf., 2017, 16, p 115–123.

    CAS  Google Scholar 

  7. J. Xiong, Z. Yin, and W. Zhang, Closed-Loop Control of Variable Layer Width for Thin-Walled Parts in Wire and Arc Additive Manufacturing, J. Mater. Process. Technol., 2016, 233, p 100–106. https://doi.org/10.1016/j.jmatprotec.2016.02.021

    Article  Google Scholar 

  8. K.H. Kazmi, S.K. Sharma, A.K. Das, A. Mandal, and A. Shukla, Development of Wire Arc Additive Manufactured Cu-Si Alloy: Study of Microstructure and Wear Behavior, J. Mater. Eng. Perform., 2023, 33(1), p 110. https://doi.org/10.1007/s11665-023-07972-9

    Article  CAS  Google Scholar 

  9. M. Anand and A.K. Das, Grain Refinement in Wire-Arc Additive Manufactured Inconel 82 Alloy Through Controlled Heat Input, J. Alloys Compd., 2022, 929, p 166949.

    Article  CAS  Google Scholar 

  10. B. Mezrag, F. Deschaux-Beaume, and M. Benachour, Control of Mass and Heat Transfer for Steel/Aluminium Joining Using Cold Metal Transfer Process, Sci. Technol. Weld. Join., 2015, 20(3), p 189–198. https://doi.org/10.1179/1362171814Y.0000000271

    Article  CAS  Google Scholar 

  11. M. Anand, H. Bishwakarma, N. Kumar, K. Ujjwal, and A.K. Das, Fabrication of Multilayer Thin Wall by WAAM Technique and Investigation of Its Microstructure and Mechanical Properties, Mater. Today Proc., 2022, 56, p 927–930.

    Article  CAS  Google Scholar 

  12. S.K. Sharma and C. Sharma, Processing Techniques, Microstructural and Mechanical Properties of Wire Arc Additive Manufactured Stainless Steel: A Review, J. Inst. Eng. Ser. C, 2022, 31, p 1–15.

    CAS  Google Scholar 

  13. H.Y. Nie, Z.Y. Yunpeng, P. Zhang, X. Wu, and G. Li, Rapid Prototyping of 4043 Al-Alloy Parts by Cold Metal Transfer, Sci. Technol. Weld. Join., 2018, 23(6), p 527–535.

    Article  CAS  Google Scholar 

  14. H. Geng, J. Li, J. Xiong, and X. Lin, Optimisation of Interpass Temperature and Heat Input for Wire and Arc Additive Manufacturing 5A06 Aluminium Alloy, Sci. Technol. Weld. Join., 2017, 22(6), p 472–483. https://doi.org/10.1080/13621718.2016.1259031

    Article  CAS  Google Scholar 

  15. K. Ujjwal, M. Anand, H. Bishwakarma, and A.K. Das, Effect of Clamping Position on the Residual Stress in Wire Arc Additive Manufacturing, Int. J. Mater. Res., 2023, 114(10–11), p 872.

    Article  CAS  Google Scholar 

  16. A.W. AlShaer, L. Li, and A. Mistry, The Effects of Short Pulse Laser Surface Cleaning on Porosity Formation and Reduction in Laser Welding of Aluminium Alloy for Automotive Component Manufacture, Opt. Laser Technol., 2014, 64, p 162–171. https://doi.org/10.1016/j.optlastec.2014.05.010

    Article  ADS  CAS  Google Scholar 

  17. G. Gou, M. Zhang, H. Chen, J. Chen, P. Li, and Y.P. Yang, Effect of Humidity on Porosity, Microstructure, and Fatigue Strength of A7N01S-T5 Aluminum Alloy Welded Joints in High-Speed Trains, Mater. Des., 2015, 85, p 309–317. https://doi.org/10.1016/j.matdes.2015.06.177

    Article  CAS  Google Scholar 

  18. K.H. Kazmi, A.K. Das, S.K. Sharma, A. Mandal, and A.K. Shukla, Wire Arc Additive Manufacturing of ER-4043 Aluminum Alloy: Evaluation of Bead Profile, Microstructure, and Wear Behavior, Weld. World, 2023, 67(9), p 2187.

    Article  CAS  Google Scholar 

  19. K.H. Kazmi, S.K. Sharma, A.K. Das, A. Mandal, A. Kumar Shukla, and R. Mandal, Wire Arc Additive Manufacturing of ER-4043 Aluminum Alloy: Effect of Tool Speed on Microstructure, Mechanical Properties and Parameter Optimization, J. Mater. Eng. Perform., 2023, 23, p 1–4. https://doi.org/10.1007/s11665-023-08309-2

    Article  CAS  Google Scholar 

  20. S. Mohanty, S. Basak, D. Saran, K. Chatterjee, T. Datta, A. Kumar, C. Prakash, D.M. Chun, S.T. Hong, and K.K. Sahu, Advanced Surface Engineering Approaches for Exotic Applications, Int. J. Precis. Eng. Manuf., 2023, 9, p 1–33. https://doi.org/10.1007/s12541-023-00870-z

    Article  Google Scholar 

  21. T. Rubben, R.I. Revilla, and I. De Graeve, Influence of Heat Treatments on the Corrosion Mechanism of Additive Manufactured AlSi10Mg, Corros. Sci., 2019, 147, p 406–415. https://doi.org/10.1016/j.corsci.2018.11.038

    Article  CAS  Google Scholar 

  22. M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, E.P. Ambrosio, F. Calignano, D. Manfredi, M. Pavese, and P. Fino, Effect of Heat Treatment on Corrosion Resistance of DMLS AlSi10Mg Alloy, Electrochim. Acta, 2016, 206, p 346–355. https://doi.org/10.1016/j.electacta.2016.04.157

    Article  CAS  Google Scholar 

  23. A.S. Leon and E.A. Avi, Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing (AM) vs. Its Counterpart Gravity Cast Alloy, Metals (Basel), 2016, 148(6), p 1–9.

    Google Scholar 

  24. E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, Additive Manufactured AlSi10Mg Samples Using Selective Laser Melting (SLM): Microstructure, High Cycle Fatigue, and Fracture Behavior, Mater. Des., 2012, 34, p 159–169. https://doi.org/10.1016/j.matdes.2011.07.067

    Article  CAS  Google Scholar 

  25. M. Tang and P.C. Pistorius, Oxides, Porosity and Fatigue Performance of AlSi10Mg Parts Produced by Selective Laser Melting, Int. J. Fatigue, 2017, 94, p 192–201. https://doi.org/10.1016/j.ijfatigue.2016.06.002

    Article  CAS  Google Scholar 

  26. Q. Tan, J. Zhang, Q. Sun, Z. Fan, G. Li, Y. Yin, Y. Liu, and M.-X. Zhang, Inoculation Treatment of an Additively Manufactured 2024 Aluminium Alloy with Titanium Nanoparticles, Acta Mater., 2020, 196, p 1–16. https://doi.org/10.1016/j.actamat.2020.06.026

    Article  ADS  CAS  Google Scholar 

  27. N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys Using Selective Laser Melting, Prog. Mater. Sci., 2019, 106, p 100578. https://doi.org/10.1016/j.pmatsci.2019.100578

    Article  CAS  Google Scholar 

  28. J.K. Yoder, R.J. Griffiths, and H.Z. Yu, Deformation-Based Additive Manufacturing of 7075 Aluminum with Wrought-like Mechanical Properties, Mater. Des., 2021, 198, p 109288. https://doi.org/10.1016/j.matdes.2020.109288

    Article  CAS  Google Scholar 

  29. D. Oropeza, D.C. Hofmann, K. Williams, S. Firdosy, P. Bordeenithikasem, M. Sokoluk, M. Liese, J. Liu, and X. Li, Welding and Additive Manufacturing with Nanoparticle-Enhanced Aluminum 7075 Wire, J. Alloys Compd., 2020, 834, p 154987. https://doi.org/10.1016/j.jallcom.2020.154987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549(7672), p 365–369. https://doi.org/10.1038/nature23894

    Article  ADS  CAS  PubMed  Google Scholar 

  31. H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, Selective Laser Melting of High Strength Al–Cu–Mg Alloys: Processing, Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2016, 656, p 47–54. https://doi.org/10.1016/j.msea.2015.12.101

    Article  CAS  Google Scholar 

  32. S. Basak, S.K. Sharma, K.K. Sahu, S. Gollapudi, and J.D. Majumdar, Surface Modification of Structural Material for Nuclear Applications by Electron Beam Melting: Enhancement of Microstructural and Corrosion Properties of Inconel 617, SN Appl. Sci., 2019, 1(7), p 1–2.

    Article  CAS  Google Scholar 

  33. T. Hauser, R.T. Reisch, P.P. Breese, B.S. Lutz, M. Pantano, Y. Nalam, K. Bela, T. Kamps, J. Volpp, and A.F.H. Kaplan, Porosity in Wire Arc Additive Manufacturing of Aluminium Alloys, Addit. Manuf., 2021, 41, p 101993. https://doi.org/10.1016/j.addma.2021.101993

    Article  CAS  Google Scholar 

  34. S. Basak, S.K. Sharma, M. Mondal, K.K. Sahu, S. Gollapudi, J. Dutta Majumdar, and S.T. Hong, Electron Beam Surface Treatment of 316L Austenitic Stainless Steel: Improvements in Hardness, Wear, and Corrosion Resistance, Met. Mater. Int., 2020, 27, p 953.

    Article  Google Scholar 

Download references

Funding

There are no financial or non-financial interests to disclose for the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit K. Sharma.

Ethics declarations

Conflict of interest

The authors state that they have no potential conflicts of interest.

Ethical Approval

All authors have followed ethical responsibilities.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S.K., Chandra, M., Kazmi, K.H. et al. Surface Characteristics, Microstructural, and Tribological Behavior of Wire Arc Additive Manufactured Aluminum-5356 Alloy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09320-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09320-x

Keywords

Navigation