Skip to main content
Log in

Effect of Cold-Drawing Deformation on the Microstructure and Properties of AA2024-T8

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

T8 treatment includes solution treatment, cold working and artificial aging treatment. T8 treatment can greatly improve the hardness and strength of 2024 aluminum alloy without reducing the corrosion resistance. The effect of 0, 1, 2, 3, and 4% cold-drawing deformation on the microstructures of the alloy was observed by transmission electron microscopy, and properties of the alloy was investigated by hardness tests, tensile tests and electrochemical corrosion tests. The results show that the mechanical properties and corrosion resistance of cold-drawing deformed 2024 aluminum alloy are better than those of non-deformed alloy. Compared with AA2024-T6, AA2024-T8 with 2% cold-drawing deformation has a higher hardness by 11.3%, and a higher tensile strength by 10.8%. The improvement of the properties of AA2024-T8 is mainly due to the interaction between dislocations and precipitates. With the increase in cold-drawing deformation, the nucleation points of precipitates in AA2024-T8 gradually increase, and precipitates are gradually coarsened under the same artificial aging treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. C. Fan, L. Ou, Z. Hu, J. Yang, and X. Chen, “Re-dissolution and re-precipitation behavior of nano-precipitated phase in Al−Cu−Mg alloy subjected to rapid cold stamping,” Trans. Nonferrous Met. Soc. China 29, 2455–2462 (2019). https://doi.org/10.1016/s1003-6326(19)65153-8

    Article  CAS  Google Scholar 

  2. Y. Liu, F. Teng, F. H. Cao, Z. X. Yin, Y. Jiang, S. B. Wang, and P. K. Shen, “Defective GP-zones and their evolution in an Al–Cu–Mg alloy during high-temperature aging,” J. Alloys Compd. 774, 988–996 (2019). https://doi.org/10.1016/j.jallcom.2018.10.061

    Article  CAS  Google Scholar 

  3. M. H. Ghoncheh, S. G. Shabestari, A. Asgari, and M. Karimzadeh, “Nonmechanical criteria proposed for prediction of hot tearing sensitivity in 2024 aluminum alloy,” Trans. Nonferrous Met. Soc. China 28, 848–857 (2018). https://doi.org/10.1016/s1003-6326(18)64718-1

    Article  CAS  Google Scholar 

  4. M.-L. De Bonfils-Lahovary, L. Laffont, and C. Blanc, “Characterization of intergranular corrosion defects in a 2024 T351 aluminium alloy,” Corros. Sci. 119, 60–67 (2017). https://doi.org/10.1016/j.corsci.2017.02.020

    Article  CAS  Google Scholar 

  5. F. M. Queiroz, M. Terada, A. F. S. Bugarin, H. G. De Melo, and I. Costa, “Comparison of corrosion resistance of the AA2524-T3 and the AA2024-T3,” Metals 11, 980 (2021). https://doi.org/10.3390/met11060980

    Article  CAS  Google Scholar 

  6. F. Z. Lemmadi, A. Chala, O. Belahssen, and S. Benramache, “Effect of heat treatments on structural, microstructural and mechanical properties of Al 2017 alloy,” Phys. Met. Metallogr. 117, 83–88 (2016). https://doi.org/10.1134/s0031918x16010099

    Article  ADS  CAS  Google Scholar 

  7. C. Rockenhäuser, C. Rowolt, B. Milkereit, R. Darvishi Kamachali, O. Kessler, and B. Skrotzki, “On the long-term aging of S-phase in aluminum alloy 2618A,” J. Mater. Sci. 56, 8704–8716 (2021). https://doi.org/10.1007/s10853-020-05740-x

    Article  ADS  CAS  Google Scholar 

  8. S. Sun, Yi. Fang, L. Zhang, C. Li, and S. Hu, “Effects of aging treatment and peripheral coarse grain on the exfoliation corrosion behaviour of 2024 aluminium alloy using SR-CT,” J. Mater. Res. Technol. 9, 3219–3229 (2020). https://doi.org/10.1016/j.jmrt.2020.01.069

    Article  CAS  Google Scholar 

  9. W. Shi, H. Zhou, and X. Zhang, “High-strength and anti-corrosion of Al–Cu–Mg alloy by controlled ageing process,” Philos. Mag. Lett. 99, 235–242 (2019). https://doi.org/10.1080/09500839.2019.1662960

    Article  ADS  CAS  Google Scholar 

  10. Y. C. Lin, G. Liu, M.-S. Chen, J.-L. Zhang, Zh.-G. Chen, Yu-Q. Jiang, and J. Li, “Corrosion resistance of a two-stage stress-aged Al–Cu–Mg alloy: Effects of external stress,” J. Alloys Compd. 661, 221–230 (2016). https://doi.org/10.1016/j.jallcom.2015.11.173

    Article  CAS  Google Scholar 

  11. H. He, Yo. Yi, S. Huang, W. Guo, and Yu. Zhang, “Effects of thermomechanical treatment on grain refinement, second-phase particle dissolution, and mechanical properties of 2219 Al alloy,” J. Mater. Process. Technol. 278, 116506 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116506

    Article  CAS  Google Scholar 

  12. H. Li, W. Xu, Z. Wang, B. Fang, R. Song, and Z. Zheng, “Effects of re-ageing treatment on microstructure and tensile properties of solution treated and cold-rolled Al–Cu–Mg alloys,” Mater. Sci. Eng., A 650, 254–263 (2016). https://doi.org/10.1016/j.msea.2015.10.051

    Article  CAS  Google Scholar 

  13. Y. J. Huang, Z. G. Chen, and Z. Q. Zheng, “A conventional thermo-mechanical process of Al–Cu–Mg alloy for increasing ductility while maintaining high strength,” Scr. Mater. 64, 382–385 (2011). https://doi.org/10.1016/j.scriptamat.2010.10.037

    Article  CAS  Google Scholar 

  14. X.-Ya. Liu, Zh.-P. Wang, Q.-Sh. Li, X.-L. Zhang, H.‑X. Cui, and X.-L. Zhang, “Effects of pre-deformation on microstructure and properties of Al–Cu–Mg–Ag heat-resistant alloy,” J. Cent. S. Univ. 24, 1027–1033 (2017). https://doi.org/10.1007/s11771-017-3505-x

    Article  CAS  Google Scholar 

  15. H. Wang, Yo. Yi, and S. Huang, “Influence of pre-deformation and subsequent ageing on the hardening behavior and microstructure of 2219 aluminum alloy forgings,” J. Alloys Compd. 685, 941–948 (2016). https://doi.org/10.1016/j.jallcom.2016.06.111

    Article  CAS  Google Scholar 

  16. X. Li, K. Lei, P. Song, X. Liu, F. Zhang, J. Li, and J. Chen, “Strengthening of aluminum alloy 2219 by thermo-mechanical treatment,” J. Mater. Eng. Perform. 24, 3905–3911 (2015). https://doi.org/10.1007/s11665-015-1665-0

    Article  CAS  Google Scholar 

  17. T. S. Parel, S. C. Wang, and M. J. Starink, “Hardening of an Al–Cu–Mg alloy containing Types I and II S phase precipitates,” Mater. Des. 31, S2–S5 (2010). https://doi.org/10.1016/j.matdes.2009.12.048

    Article  CAS  Google Scholar 

  18. A. Balbo, A. Frignani, V. Grassi, and F. Zucchi, “Electrochemical behaviour of AA2198 and AA2139 in neutral solutions,” Mater. Corros. 66, 796–802 (2015). https://doi.org/10.1002/maco.201408059

    Article  CAS  Google Scholar 

  19. L. Huang, K. Chen, and S. Li, “Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al–Zn–Mg–Cu alloy,” Mater. Sci. Eng., B 177, 862–868 (2012). https://doi.org/10.1016/j.mseb.2012.04.008

    Article  CAS  Google Scholar 

  20. K. S. Ghosh and K. Tripati, “Microstructural characterization and electrochemical behavior of AA2014 Al-Cu–Mg–Si alloy of various tempers,” J. Mater. Eng. Perform. 27, 5926–5937 (2018). https://doi.org/10.1007/s11665-018-3694-y

    Article  CAS  Google Scholar 

  21. U. Donatus, R. M. da Silva, J. V. de Sousa Araujo, M. X. Milagre, C. P. de Abreu, C. de Souza Carvalho Machado, and I. Costa, “Macro and microgalvanic interactions in friction stir weldment of AA2198-T851 alloy,” J. Mater. Res. Technol. 8, 6209–6222 (2019). https://doi.org/10.1016/j.jmrt.2019.10.015

    Article  CAS  Google Scholar 

  22. S. Chen, K. Chen, G. Peng, L. Jia, and P. Dong, “Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy,” Mater. Des. 35, 93–98 (2012). https://doi.org/10.1016/j.matdes.2011.09.033

    Article  CAS  Google Scholar 

  23. L. Wen, Ya. Wang, Yu. Zhou, J. Ouyang, L. Guo, and D. Jia, “Corrosion evaluation of microarc oxidation coatings formed on 2024 aluminium alloy,” Corros. Sci. 52, 2687–2696 (2010). https://doi.org/10.1016/j.corsci.2010.04.022

    Article  CAS  Google Scholar 

  24. K. Wang, R. Su, T. Liu, Yi. Qu, and R. Li, “Electrochemical assessment of laser heat treatment of an Al–Zn–Mg–Cu alloy,” Mater. Corros. 71, 374–381 (2020). https://doi.org/10.1002/maco.201911154

    Article  CAS  Google Scholar 

  25. S. Wang and M. Starink, “Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys,” Int. Mater. Rev. 50, 193–215 (2005). https://doi.org/10.1179/174328005x14357

    Article  Google Scholar 

  26. H.-Zh. Li, R.-M. Liu, X.-P. Liang, M. Deng, H.-J. Liao, and L. Huang, “Effect of pre-deformation on microstructures and mechanical properties of high purity Al–Cu–Mg alloy,” Trans. Nonferrous Met. Soc. China 26, 1482–1490 (2016). https://doi.org/10.1016/s1003-6326(16)64253-x

    Article  CAS  Google Scholar 

  27. S. C. Wang and M. J. Starink, “Two types of S phase precipitates in Al–Cu–Mg alloys,” Acta Mater. 55, 933–941 (2007). https://doi.org/10.1016/j.actamat.2006.09.015

    Article  ADS  CAS  Google Scholar 

  28. R. Oltra, B. Vuillemin, F. Rechou, and C. Henon, “Effect of aeration on the microelectrochemical characterization of Al2Cu intermetallic phases,” Electrochem. Solid-State Lett. 12, C29–C31 (2009). https://doi.org/10.1149/1.3224876

    Article  CAS  Google Scholar 

  29. M. Araghchi, H. Mansouri, R. Vafaei, and Yi. Guo, “A novel cryogenic treatment for reduction of residual stresses in 2024 aluminum alloy,” Mater. Sci. Eng., A 689, 48–52 (2017). https://doi.org/10.1016/j.msea.2017.01.095

    Article  CAS  Google Scholar 

  30. R. K. W. Marceau, G. Sha, R. N. Lumley, and S. P. Ringer, “Evolution of solute clustering in Al–Cu–Mg alloys during secondary ageing,” Acta Mater. 58, 1795–1805 (2010). https://doi.org/10.1016/j.actamat.2009.11.021

    Article  ADS  CAS  Google Scholar 

  31. R. K. W. Marceau, G. Sha, R. Ferragut, A. Dupasquier, and S. P. Ringer, “Solute clustering in Al–Cu–Mg alloys during the early stages of elevated temperature ageing,” Acta Mater. 58, 4923–4939 (2010). https://doi.org/10.1016/j.actamat.2010.05.020

    Article  ADS  CAS  Google Scholar 

  32. S. C. Wang, M. J. Starink, and N. Gao, “Precipitation hardening in Al–Cu–Mg alloys revisited,” Scr. Mater. 54, 287–291 (2006). https://doi.org/10.1016/j.scriptamat.2005.09.010

    Article  CAS  Google Scholar 

  33. M. J. Starink and S. C. Wang, “The thermodynamics of and strengthening due to co-clusters: General theory and application to the case of Al–Cu–Mg alloys,” Acta Mater. 57, 2376–2389 (2009). https://doi.org/10.1016/j.actamat.2009.01.021

    Article  ADS  CAS  Google Scholar 

  34. L. C. Abodi, J. A. DeRose, S. Van Damme, A. Demeter, T. Suter, and J. Deconinck, “Modeling localized aluminum alloy corrosion in chloride solutions under non-equilibrium conditions: Steps toward understanding pitting initiation,” Electrochim. Acta 63, 169–178 (2012). https://doi.org/10.1016/j.electacta.2011.12.074

    Article  CAS  Google Scholar 

  35. R. Su, S. Ma, K. Wang, G. Li, Yi. Qu, and R. Li, “Effect of cyclic deep cryogenic treatment on corrosion resistance of 7075 alloy,” Met. Mater. Int. 28, 862–870 (2022). https://doi.org/10.1007/s12540-021-00975-y

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Liaoning Natural Science Foundation (2021-MS-235), the Science and Technology Program of Liaoning Provincial Department of Education (LJGD2020010) and the National Nature Science Foundation of China (51775353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Su.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y.X., Su, R.M., Zhang, W.J. et al. Effect of Cold-Drawing Deformation on the Microstructure and Properties of AA2024-T8. Phys. Metals Metallogr. 124, 1501–1508 (2023). https://doi.org/10.1134/S0031918X22100362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22100362

Keywords:

Navigation