Skip to main content

Advertisement

Log in

Intergranular corrosion and mechanical property evolution in AA2024 alloy through heat treatment

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

AA2024 was developed to investigate how heat treatment might affect its mechanical and corrosion characteristics. The samples underwent different heat treatment processes: three solution heat treatments at 495 °C for 2 h followed by natural aging for 5 days, and two artificial aging treatments, one at 190 °C for 2.5 h and the other at 130 °C for 6 h. After the heat treatments, all samples were immersed in a 3% Nacl salt solution for a total of 2880 h. The metallurgical characterization of the samples was performed using optical microscopy, and scanning electron microscopy. The observations revealed the formation of corrosion product nodules on some samples, while others showed pitting corrosion, and one sample (T6) experienced intergranular corrosion. Moreover, the microstructural analysis indicated an evolution of dimples in the AA2024 T4 alloy, along with the development of fine grains compared to the non-heat-treated samples. Mechanical characterization was carried out using a Vickers hardness tester and a tensile testing machine. The Vickers hardness test showed that the AA2024 T4 sample exhibited the highest hardness value (Hv = 145) compared to the other samples. However, the tensile strength of the AA2024 alloy decreased from 512.20 MPa to 411.02 MPa after the T4 heat treatment. The yield strength (YS) and elongation properties also experienced changes after the heat treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Read « Aging of U.S. Air Force Aircraft: Final Report » at NAP.edu. https://doi.org/10.17226/5917

  2. Yumpu.com, Success Stories: Air Force: Material Substitution and New Sealing ..., yumpu.com. https://www.yumpu.com/en/document/view/43390696/success-stories-air-force-material-substitution-and-new-sealing-/3. Accessed 16 Aug 2023

  3. Aluminum: Properties and Physical Metallurgy - ASM International | ASM International. https://www.asminternational.org/home/-/journal_content/56/10192/06236G/PUBLICATION/. Accessed 16 Aug 2023

  4. Metallurgical factors affecting fracture toughness of aluminum alloys | SpringerLink. https://link.springer.com/article/10.1007/BF02672285. Accessed 16 Aug 2023

  5. Luo C, Zhou X, Thompson GE, Hughes AE et al (2012) Observations of intergranular corrosion in AA2024-T351: The influence of grain stored energy. Corros Sci 61:35–44. https://doi.org/10.1016/j.corsci.2012.04.005

    Article  Google Scholar 

  6. The effect of solution treatment on aging behavior and mechanical properties of AA2024-TiB2 composite synthesized by semi-solid casting | SpringerLink. https://link.springer.com/article/10.1007/s42452-019-1531-z. consulté le 11 avril 2023

  7. Foundations of Materials Science and Engineering 3RD EDITION

  8. GORE® SKYFLEX® Aerospace Materials for Civil & Military Applications, Gore. https://www.gore.com/SKYFLEX-Aerospace-Materials. consulté le 11 avril 2023

  9. Dilmeç M, Arikan H et al (2014) Effect of Solution Heat Treatment Conditions on the Mechanical Properties and Formability for AA 2024 Alloy. Appl Mech Mater 686:3–9. https://doi.org/10.4028/www.scientific.net/AMM.686.3

    Article  Google Scholar 

  10. Hutchinson CR, Ringer SP et al (2000) Precipitation processes in Al-Cu-Mg alloys microalloyed with Si. Metall Mater Trans A 31(11):2721–2733. https://doi.org/10.1007/BF02830331

    Article  Google Scholar 

  11. Elgallad E, Shen P, Zhang Z, Chen X-G et al (2014) Effects of heat treatment on the microstructure and mechanical properties of AA2618 DC cast alloy. Mater Des 61:133–140. https://doi.org/10.1016/j.matdes.2014.04.045

    Article  Google Scholar 

  12. Siqueira M, Silva A, Melo MDL, Rodrigues G et al (2019) Mechanical properties analysis of Al2024 alloy submitted to different aging time and different cold plastic deformation degree. Mater Res 22. https://doi.org/10.1590/1980-5373-mr-2018-0598

  13. Alodan MA, Smyrl WH et al (1998) Detection of localized corrosion of aluminum alloys using fluorescence microscopy. J Electrochem Soc 145(5):1571. https://doi.org/10.1149/1.1838520

    Article  Google Scholar 

  14. Knight SP, Salagaras M, Wythe AM, De Carlo F, Davenport AJ, Trueman AR et al (2010) In situ X-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys. Corros Sci 52(12):3855–3860. https://doi.org/10.1016/j.corsci.2010.08.026

    Article  Google Scholar 

  15. Sehgal A, Frankel GS, Zoofan B, Rokhlin S et al (2000) Pit growth study in Al alloys by the foil penetration technique. J Electrochem Soc 147(1):140. https://doi.org/10.1149/1.1393167

    Article  Google Scholar 

  16. Robinson MJ, Jackson NC et al (1999) The influence of grain structure and intergranularcorrosion rate on exfoliation and stress corrosion crackingof high strength Al–Cu–Mg alloys. Corros Sci 41(5):1013–1028. https://doi.org/10.1016/S0010-938X[98)00171-1

    Article  Google Scholar 

  17. Liu X, Frankel GS, Zoofan B, Rokhlin SI et al (2004) Effect of applied tensile stress on intergranular corrosion of AA2024-T3. Corros Sci 46(2):405–425. https://doi.org/10.1016/S0010-938X[03)00149-5

    Article  Google Scholar 

  18. Liu X, Frankel G et al (2006) Effects of compressive stress on localized corrosion in AA2024-T3. Corros Sci 48:3309–3329. https://doi.org/10.1016/j.corsci.2005.12.003

    Article  Google Scholar 

  19. Transition from Intergranular Corrosion to Intergranular Stress Corrosion Cracking in AA2024-T3 - IOPscience. https://iopscience.iop.org/article/10.1149/1.2142288/meta. Accessed 16 Aug 2023

  20. Empirical Propagation Laws of Intergranular Corrosion Defects Affecting 2024 T351 Alloy in Chloride Solutions | Request PDF. https://www.researchgate.net/publication/277678917_Empirical_Propagation_Laws_of_Intergranular_Corrosion_Defects_Affecting_2024_T351_Alloy_in_Chloride_Solutions. Accessed 16 Aug 2023

  21. Larignon C, Alexis J, Andrieu E, Blanc C, Odemer G, Salabura J-C et al (2011) Corrosion damages induced by cyclic exposure of 2024 aluminum alloy in chloride-containing environments. J Electrochem Soc 158:C284–C295. https://doi.org/10.1149/1.3610401

    Article  Google Scholar 

  22. Liao C-M, Wei RP (1999) Galvanic coupling of model alloys to aluminum—a foundation for understanding particle-induced pitting in aluminum alloys. Electrochim Acta 45:881–888

    Article  Google Scholar 

  23. Buchheit RG, Grant RP, Hlava PF, Mckenzie B, Zender GL (1997) Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024–T3. J Electrochem Soc 144:2621

    Article  Google Scholar 

  24. Boag A, Hughes AE, Glenn AM, Muster TH, McCulloch D (2011) Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles. Corros Sci 53:17–26

    Article  Google Scholar 

  25. Deng YHG, Deng Yanjun HG et al (2018) Effect of pre-deformation on the second phase precipitation and mechanical properties of Al-Cu-Li-Mn-Zr alloys. Mater Guide 32(4):569–573. https://doi.org/10.11896/j.issn.1005-023X.2018.04.012

    Article  Google Scholar 

  26. Garchani FEE, Kabiri MR et al (2023) The study on characteristics of heat treatment of the AA2024 aluminum alloys. J Multidiscip Appl Nat Sci 3(2). https://doi.org/10.47352/jmans.2774-3047.166

  27. Shimizu K, Brown GM, Kobayashi K, Skeldon P, Thompson GE, Wood GC et al (1998) Ultramicrotomy—a route towards the enhanced understanding of the corrosion and filming behaviour of aluminium and its alloys. Corros Sci 40(7):1049–1072. https://doi.org/10.1016/S0010-938X[98)00006-7

    Article  Google Scholar 

  28. Corrosion Behaviour of Different Tempers of AA7075 Aluminium Alloy | Request PDF. https://www.researchgate.net/publication/223725147_Corrosion_Behaviour_of_Different_Tempers_of_AA7075_Aluminium_Alloy. consulté le 22 juillet 2022

  29. (1999) Galvanic coupling of model alloys to aluminum — a foundation for understanding particle-induced pitting in aluminum alloys. Electrochimica Acta 45(6): 881-888. https://doi.org/10.1016/S0013-4686[99)00299-6

  30. Buchheit R, Grant RP, Hlava P, McKenzie B, Zender G et al (1997) Local Dissolution Phenomena Associated with S Phase [Al2CuMg) Particles in Aluminum Alloy 2024‐T3. https://doi.org/10.1149/1.1837874

  31. El Garchani FE et al (2023) Effects of heat treatment on the corrosion behavior and mechanical properties of aluminum alloy 2024. J Mater Res Technol 25:1355–1363. https://doi.org/10.1016/j.jmrt.2023.05.278

    Article  Google Scholar 

  32. Ge F, Zhang L, Tian H, Yu M, Liang J, Wang X et al (2020) Stress corrosion cracking behavior of 2024 and 7075 high-strength aluminum alloys in a simulated marine atmosphere contaminated with SO2. J Mater Eng Perform 29(1):410–422. https://doi.org/10.1007/s11665-019-04537-7

    Article  Google Scholar 

  33. [PDF) Local Hydrogen Enrichment Induced by Corrosion in a 2024 Aluminum Alloy. https://www.researchgate.net/publication/233852819_Local_Hydrogen_Enrichment_Induced_by_Corrosion_in_a_2024_Aluminum_Alloy. Accessed 16 Aug 2023

  34. Zhang X, Song R, Sun B et al (2018) Effects of aging treatment on intergranular corrosion and stress corrosion cracking behavior of AA7003. J Wuhan Univ Technol-Mat Sci Edit 33(5):1198–1204. https://doi.org/10.1007/s11595-018-1953-2

    Article  Google Scholar 

  35. Dwivedi SP, Ashok Kumar MV, Mishra R (2019) Effect of MgO addition on physico-chemical, mechanical and thermal behaviour of Al/Si3N4 composite material developed via hybrid casting technique. J Ceram Process Res 20(6):632–642

    Article  Google Scholar 

  36. Ilevbare GO, Schneider O, Kelly RG, Scully JR (2004) In Situ Confocal Laser Scanning Microscopy of AA 2024-T3 Corrosion Metrology: I. Localized Corrosion of Particles. J Electrochem Soc 151:B453. https://doi.org/10.1149/1.1764780

    Article  Google Scholar 

  37. Blanc C, Freulon A, Lafont M-C, Kihn Y, Mankowski G (2006) Modelling the corrosion behaviour of Al2CuMg coarse particles in copper-rich aluminium alloys. Corros Sci 48:3838–3851. https://doi.org/10.1016/j.corsci.2006.01.012

    Article  Google Scholar 

  38. Lacroix L, Ressier L, Blanc C, Mankowski G (2008) Combination of AFM, SKPFM, and SIMS to Study the Corrosion Behavior of S-phase particles in AA2024-T351. J Electrochem Soc 155:C131. https://doi.org/10.1149/1.2833315

    Article  Google Scholar 

  39. Hughes AE, Parvizi R, Forsyth M (2015) Microstructure and corrosion of AA2024. Corros Rev 33:1–30. https://doi.org/10.1515/corrrev-2014-0039

    Article  Google Scholar 

  40. Zhang W, Frankel G et al (2003) Transitions between pitting and intergranular corrosion in AA2024. Electrochimica Acta 48:1193–1210. https://doi.org/10.1016/S0013-4686[02)00828-9

    Article  Google Scholar 

  41. Localized corrosion of 2024 T351 aluminium alloy in chloride media | Semantic Scholar. https://www.semanticscholar.org/paper/Localized-corrosion-of-2024-T351-aluminium-alloy-in-Guillaumin-Mankowski/834c060adfd3f00dfa34e108718899537de49981. consulté le 11 avril 2023

  42. Blanc C, Lavelle B, Mankowski G et al (1997) The role of precipitates enriched with copper on the susceptibility to pitting corrosion of the 2024 aluminium alloy. Corros Sci 39(3):495–510. https://doi.org/10.1016/S0010-938X[97)86099-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Ezzohra El Garchani.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Sample statement

“All authors contributed to the design and development of the study. The preparation of the material, data collection, and analysis were carried out by Fatima Ezzohra El Garchani, and Moulay Rachid Kabiri. The first draft of the manuscript was written by Fatima Ezzohra El Garchani and all authors commented on the previous versions of the manuscript. All authors have read and approved the final manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Garchani, F., Kabiri, M.R. Intergranular corrosion and mechanical property evolution in AA2024 alloy through heat treatment. Int J Adv Manuf Technol 128, 3273–3282 (2023). https://doi.org/10.1007/s00170-023-12161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12161-y

Keywords

Navigation