Skip to main content
Log in

Grain Refinement and Strengthening Mechanism Analysis of an Ultrahigh Strength Sc(Er)–Zr–7075 Aluminum Alloy

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The influence mechanisms of Er and Zr or Sc and Zr addition on the microstructure and mechanical properties of 7075 aluminum alloys were elucidated. Synchronous enhancements in strength and ductility were obtained in 7075S (Sc–Zr–7075) aluminum alloys. The improvement of strength and ductility was mainly attributed to grain refinement and Orowan strengthening of Al3(Sc,Zr) phase. The grain size of 7075E (Er–Zr–7075) and 7075S alloys are remarkably refined as compared to 7075 aluminum alloy. The lower mismatch between Al3(Sc,Zr) phase and α-Al provides more effective heterogeneous nucleation sites for α-Al in the solidification process, and thus the grain refinement effect is more significant. The higher volume fraction and smaller particle size of Al3(Sc,Zr) than Al3(Er,Zr) phase lead to higher Orowan strength of 7075S aluminum alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Zhang, T. Liu, C. He, J. Ding, E. Liu, C. Shi, J. Li, and N. Zhao, “Evolution of microstructure and properties of Al–Zn–Mg–Cu–Sc–Zr alloy during aging treatment,” J. Alloys Compd. 658, 946–951 (2016).

    Article  CAS  Google Scholar 

  2. A. D. Kotov, A. V. Mikhaylovskaya, A. A. Borisov, O. A. Yakovtseva, and V. K. Portnoy, “High-strain-rate superplasticity of the Al–Zn–Mg–Cu alloys with Fe and Ni additions,” Phys. Met. Metallogr. 118, 913–921 (2017).

    Article  CAS  Google Scholar 

  3. W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, and C. Hutchinson, “Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity,” Science 363 (6430), 972–975 (2019).

    Article  CAS  Google Scholar 

  4. Z. Y. Guo, G. Zhao, and X. Chen, “Effects of homogenization treatment on recrystallization behavior of 7150 aluminum sheet during post-rolling annealing,” Mater. Charact. 114, 79–87 (2016).

    Article  CAS  Google Scholar 

  5. T. Gao, Y. Zhang, and X. Liu, “Influence of trace Ti on the microstructure, age hardening behavior and mechanical properties of an Al–Zn–Mg–Cu–r alloy,” Mater. Sci. Eng., A 598, 293–298 (2014).

    Article  CAS  Google Scholar 

  6. O. Sh. Sitdikov, E. V. Avtokratova, O. E. Mukhametdinova, R. N. Garipova, and M. V. Markushev, “Effect of the size of Al3(Sc,Zr) precipitates on the structure of multi-directionally isothermally forged Al–Mg–Sc–Zr alloy,” Phys. Met. Metallogr. 118, 1215–1224 (2017).

    Article  CAS  Google Scholar 

  7. Y. Deng, Z. Yin, K. Zhao, J. Duan, and Z. He, “Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys,” J. Alloys Compd. 530, 71–80 (2012).

    Article  CAS  Google Scholar 

  8. Y. Deng, G. F. Xu, Z. M. Yin, X. F. Lei, and J. W. Huang, “Effects of Sc and Zr microalloying additions on the recrystallization texture and mechanism of Al–Zn–Mg alloys,” J. Alloys Compd. 580, 412–426 (2013).

    Article  CAS  Google Scholar 

  9. G. Teng, C. Liu, Z. Ma, W. Zhou, L. Wei, Y. Chen, J. Li, and Y. Mo, “Effects of minor Sc addition on the microstructure and mechanical properties of 7055 Al alloy during aging,” Mater. Sci. Eng., A 713, 61–66 (2018).

    Article  CAS  Google Scholar 

  10. B. Li, Q. L. Pan, X. Huang, and Z. M. Yin, “Microstructures and properties of Al–Zn–Mg–Mn alloy with trace amounts of Sc and Zr,” Mater. Sci. Eng., A 616, 219–228 (2014).

    Article  CAS  Google Scholar 

  11. S. Malopheyev, V. Kulitskiy, and R. Kaibyshev, “Deformation structures and strengthening mechanisms in an Al–Mg–Sc–Zr alloy,” J. Alloys Compd. 698, 957–966 (2017).

    Article  CAS  Google Scholar 

  12. S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. Alloys Compd. 574, 92–97 (2013).

    Article  CAS  Google Scholar 

  13. H. C. Fang, H. Chao, and K. H. Chen, “Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn–Mg–Cu alloys,” Mater. Sci. Eng., A 610, 10–16 (2014).

    Article  CAS  Google Scholar 

  14. H. Wu, S. P. Wen, J. T. Lu, Z. P. Mi, X. L. Zeng, H. Huang, and Z. R. Nie, “Microstructural evolution of new type Al–Zn–Mg–Cu alloy with Er and Zr additions during homogenization,” Trans. Nonferrous Met. Soc. China 27, 1476–1482 (2017).

    Article  CAS  Google Scholar 

  15. G. Yan, C. Wenlin, G. Zhen, and W. Liang, “Effect of rare earth metals on mechanical and corrosion properties of Al–Zn–Mg–Cu–Zr alloy,” Rare Met. Mater. Eng. 46, 2070–2075 (2017).

    Article  Google Scholar 

  16. G. F. Xu, S. Z. Mou, J. J. Yang, T. N. Jin, Z. R. Nie, and Z. M. Yin, “Effect of trace rare earth element Er on Al–Zn–Mg alloy,” Trans. Nonferrous Met. Soc. China 16, 598–603 (2006).

    Article  CAS  Google Scholar 

  17. S. K. Tian, J. Y. Li, and J. L. Zhang, “Effect of Zr and Sc on microstructure and properties of 7136 aluminum alloy,” J. Mater. Res. Technol. 8, 4130–4140 (2019).

    Article  CAS  Google Scholar 

  18. D. H. Xiao, M. Song, H. Q. Zhang, and K. H. Chen, “Effect of Sc on the microstructure and properties of as-cast Al–Cu–Mg–Ag–Zr alloys,” Science 4, 239–242 (2009).

    CAS  Google Scholar 

  19. B. L. Bramfitt, “The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron,” Metall. Trans. 1, 1987–1995 (1970).

    Article  CAS  Google Scholar 

  20. H. Q. Cao, “Preparation and properties of oxide dispersion strengthened aluminum alloys,” (2015).

  21. A. Loucif, R. B. Figueiredo, T. Baudinc, F. Brisset, R. Chemam, and T. G. Langdon, “Ultrafine grains and the Hall–Petch relationship in an Al–Mg–Si alloy processed by high-pressure torsion,” Mater. Sci. Eng., A 532, 139–145 (2012).

    Article  CAS  Google Scholar 

  22. P. Lehto, H. Remes, T. Saukkonen, H. Hänninen, and J. Romanoff, “Influence of grain size distribution on the Hall–Petch relationship of welded structural steel,” Mater. Sci. Eng., A 592, 28–39 (2014).

    Article  CAS  Google Scholar 

  23. Y. J. Li, A. M. F. Muggerud, A. Olsen, and T. Furu, “Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA3003 alloy,” Acta Mater. 60, 1004–1014 (2012).

    Article  CAS  Google Scholar 

  24. X. Sauvage, E. V. Bobruk, M. Yu. Murashkin, Y. Nasedkina, N. A. Enikeev, and R. Z. Valiev, “Optimization of electrical conductivity and strength combined by structure design at the nanoscale in Al–Mg–Si alloy,” Acta Mater. 98, 355–366 (2015).

    Article  CAS  Google Scholar 

  25. G. Liu, J. Sun, C. W. Nan, and K. H. Chen, “Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys,” Acta Mater. 53, 3459–3468 (2005).

    Article  CAS  Google Scholar 

Download references

Funding

The financial support for this work is provided by the National Natural Science Foundation of China (no. 51871111), the Natural Science Foundation of Shandong Province (grant no. ZR2018LE001), the Science and Technology Program of University of Jinan (nos. XKY2036 and XKY1713), the Key Research and Development Program of Shandong Province (grant no. 2019GGX102008), the Giant Light Alloy Technology (Kunshan) Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Leng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jinfeng Leng, Ren, B., Dong, Y. et al. Grain Refinement and Strengthening Mechanism Analysis of an Ultrahigh Strength Sc(Er)–Zr–7075 Aluminum Alloy. Phys. Metals Metallogr. 122, 1597–1604 (2021). https://doi.org/10.1134/S0031918X21140143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21140143

Keywords:

Navigation