Skip to main content
Log in

Half-Metallic Ferromagnets, Spin Gapless Semiconductors, and Topological Semimetals Based on Heusler Alloys: Theory and Experiment

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The paper presents a review of theoretical and experimental studies of the electronic structure and electronic and magnetic properties of various systems of Heusler alloys in the states of a half-metallic ferromagnet, spin gapless semiconductor, and topological semimetal. These substances have unusual magnetic and electronic characteristics and are highly sensitive to external effects, due to the presence of energy gaps and exotic excitations in them. Peculiarities of the behavior and evolution of the electronic structure and properties in each of these states and upon the transition between them are considered. The possibility of purposeful control of the properties of such materials opens up prospects for their practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. V. Yu. Irkhin and M. I. Katsnelson, “Half-metallic ferromagnets,” Phys.-Usp. 37, 659–676 (1994).

    Article  Google Scholar 

  2. M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, and R. A. de Groot, “Half-metallic ferromagnets: from band structure to many-body effects,” Rev. Mod. Phys. 80, No. 2, 315–378 (2008).

    Article  CAS  Google Scholar 

  3. T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39, 1–50 (2011).

    Article  Google Scholar 

  4. R. A. de Groot, F. M. Mueller, P. G. Mueller, P. G. van Engen, and K. H. J. Buschow, “New class of materials: half-metallic ferromagnets,” Phys. Rev. Lett. 50, 2024–2027 (1983).

    Article  CAS  Google Scholar 

  5. T. Guan, C. J. Lin, C. L. Yang, Y. G. Shi, C. Ren, Y. Q. Li, H. M. Weng, X. Dai, Z. Fang, S. S. Yan, and P. Xiong, “Evidence for half-metallicity in n-type HgCr2Se4,” Phys. Rev. Lett. 115, 087002 (2015).

    Article  Google Scholar 

  6. X. L. Wang, “Proposal for a new class of materials: spin gapless semiconductors,” Phys. Rev. Lett. 100, 156404 (2008).

    Article  CAS  Google Scholar 

  7. I. M. Tsidilkovski, G. I. Harus, and N. G. Shelushinina, “Impurity states and electron transport in gapless semiconductors,” Adv. Phys. 34, 43–174 (1985).

    Article  Google Scholar 

  8. L. A. Chernozatonskii and A. A. Artyukh, “Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties, and applications,” Phys.-Usp. 61, 2–28 (2018).

    Article  CAS  Google Scholar 

  9. K. Manna, Y. Sun, L. Muechler, J. Kübler, and C. Felser, “Heusler, Weyl and Berry,” Nat. Rev. Mater. 3, 244–256 (2018).

    Article  CAS  Google Scholar 

  10. X. L. Wang, “Dirac spin gapless semiconductors: promising platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects,” Natl. Sci. Rev. 4, 252–257 (2017).

    Article  CAS  Google Scholar 

  11. S. Ouardi, G. H. Fecher, C. Felser, and J. Kubler, “Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl,” Phys. Rev. Lett. 110, 100401 (2013).

    Article  Google Scholar 

  12. F. Heusler, “Ueber magnetische Manganlegierungen [German],” Verh. Dtsch. Phys. Ges. 5, 219 (1903).

    CAS  Google Scholar 

  13. A. N. Vasil’ev, V. D. Buchel’nikov, T. Tagaki, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46, 559–588 (2003).

    Article  Google Scholar 

  14. P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, “Modelling the phase diagram of magnetic shape memory Heusler alloys,” J. Phys. D: Appl. Phys. 39, 865–889 (2006).

    Article  CAS  Google Scholar 

  15. A. Planes, L. Manosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” J. Phys. Condens. Matter 21, No. 23, 233201 (2009).

    Article  Google Scholar 

  16. V. D. Buchelnikov, S. V. Taskaev, A. M. Aliev, A. B. Batdalov, A. M. Gamzatov, A. V. Korolyov, N. I. Kourov, V. G. Pushin, V. V. Koledov, V. V. Khovailo, V. G. Shavrov, and R. M. Grechishkin, “Magnetocaloric effect in Ni2.19Mn0.81Ga Heusler alloys,” Int. J. Appl. Electromagn. Mech. 23, 65–69 (2006).

    Article  Google Scholar 

  17. O. Gutfleisch, T. Gottschall, M. Fries, D. Benke, I. Radulov, K. P. Skokov, H. Wende, M. Gruner, M. Acet, P. Entel, and M. Farle, “Mastering hysteresis in magnetocaloric materials,” Philos. Trans. R. Soc. A 374, 20150308 (2016).

    Article  Google Scholar 

  18. Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, and U. Mizutani, “Semiconductorlike behavior of electrical resistivity in Heusler-type Fe2VAl compound,” Phys. Rev. Lett. 79, 1909 (1997).

    Article  CAS  Google Scholar 

  19. Y. Nishino, Thermoelectric Energy Conversion. Theories and Mechanisms, Materials, Devices, and Applications (Woodhead Publishing Series in Electronic and Optical Materials, 2021), pp. 143–156.

    Google Scholar 

  20. V. I. Okulov, A. T. Lonchakov, and V. V. Marchenkov, “Semiconductor-like behavior of electric transport in Fe–V–Al-based metallic alloys and their uncommon magnetic properties,” Phys. Met. Metallogr. 119, 1325–1328 (2018).

    Article  CAS  Google Scholar 

  21. S. M. Podgornykh, A. D. Svyazin, E. I. Schreder, V. V. Marchenkov, and V. P. Dyakina, “Low-temperature electron properties of Heusler alloys Fe2VAl and Fe2CrAl: Effect of annealing,” J. Exp. Theor. Phys. 105, 42–45 (2007).

    Article  CAS  Google Scholar 

  22. A. T. Lonchakov, V. V. Marchenkov, V. I. Okulov, K. A. Okulova, T. E. Govorkova, and S. M. Podgornykh, “New manifestations of a pseudogap state and electron spin scattering in the low-temperature thermal properties of near-stoichiometric iron-vanadium-aluminum alloys,” Low Temp. Phys. 41, 150–153 (2015).

  23. V. I. Okulov, V. E. Arkhipov, T. E. Govorkova, A. V. Korolev, K. A. Okulova, E. I. Shreder, V. V. Marchenkov, and H. W. Weber, “Experimental validation of the anomalies in the electron density of states in semiconductor iron–vanadium–aluminum alloys,” Low Temp. Phys. 33, 692–698 (2007).

    Article  CAS  Google Scholar 

  24. M. E. Jamer, B. Wilfong, V. D. Buchelnikov, et al., “Superconducting and antiferromagnetic properties of dual-phase V3Ga,” Appl. Phys. Lett. 117, 062401 (2020).

    Article  CAS  Google Scholar 

  25. K. Gornicka, G. Kuderowicz, E. M. Carnicom, et al., “Soft-mode enhanced type-I superconductivity in LiPd2Ge,” Phys. Rev. B 102, 024507 (2020).

    Article  CAS  Google Scholar 

  26. B. Q. Lv, T. Qian, and H. Ding, “Experimental perspective on three-dimensional topological semimetals,” Rev. Mod. Phys. 93, 025002 (2021).

    Article  CAS  Google Scholar 

  27. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, “Half-metallic ferromagnets and their magneto-optical properties,” J. Appl. Phys. 55, No. 6, 2151 (1984).

    Article  CAS  Google Scholar 

  28. R. A. de Groot and K. H. J. Buschow, “Recent developments in half-metallic magnetism,” J. Magn. Magn. Mater.  5457, 1377–1380 (1986).

  29. J. Kuebler, “First principle theory of metallic magnetism,” Phys. B + C 127, 257–263 (1984).

  30. R. A. de Groot, A. M. van der Kraan, and K. H. J. Buschow, “FeMnSb: A half-metallic ferrimagnet,” J. Magn. Magn. Mater. 61, 330–336 (1986).

    Article  CAS  Google Scholar 

  31. E. Shreder, S. V. Streltsov, A. Svyazhin, A. Makhnev, V. V. Marchenkov, A. Lukoyanov, and H. W. Weber, “Evolution of the electronic structure and physical properties of Fe2MeAl (Me = Ti, V, Cr) Heusler alloys,” J. Phys. Condens. Matter 20, 045212 (2008).

    Article  Google Scholar 

  32. K. A. Fomina, V. V. Marchenkov, E. I. Shreder, and H. W. Weber, “Electrical and optical properties of X2YZ (X = Co, Fe; Y = Cr, Mn, Ti; Z = Ga, Al, Si) Heusler alloys,” Solid State Phenom. 168169, 545–548 (2011).

    Google Scholar 

  33. E. I. Shreder, A. A. Makhnev, A. V. Lukoyanov, and K. G. Suresh, “Optical properties and the electronic structure of Co2TiGe and Co2TiSn Heusler alloys,” Phys. Met. Metallogr. 118, 1012–1016 (2017).

    Article  Google Scholar 

  34. C. Lidig, et al., “Surface resonance of thin films of the Heusler half-metal Co2MnSi probed by soft X-ray angular resolved photoemission spectroscopy,” Phys. Rev. B 99, 174432 (2019).

    Article  CAS  Google Scholar 

  35. M. Jourdan, et al., “Direct observation of half-metallicity in the Heusler compound Co2MnSi,” Nat. Commun. 5, 3974 (2014).

    Article  CAS  Google Scholar 

  36. V. Yu. Irkhin, M. I. Katsnelson, and A. I. Lichtenstein, “Non-quasiparticle effects in half -metallic ferromagnets,” J. Phys. Condens. Matter 19, 315201 (2007).

    Article  Google Scholar 

  37. V. Yu. Irkhin, “Non-quasiparticle states in a half-metallic ferromagnet with antiferromagnetic sd(f) interaction,” J. Phys.: Condens. Matter 27, 155602 (2015).

    Google Scholar 

  38. D. M. Edwards and J. A. Hertz, “Electron-magnon interactions in itinerant ferromagnetism. II. Strong ferromagnetism,” J. Phys. F: Met. Phys. 3, 2191 (1973).

    Article  CAS  Google Scholar 

  39. V. Yu. Irkhin and M. I. Katsnel’son, “Charge carriers in the narrow-band Hubbard ferromagnet in the spin-wave temperature range,” Sov. Phys.—Solid State 25, 1947 (1983); V. Yu. Irkhin, M. I. Katsnelson, J. Phys. C 18, 4173 (1985).

  40. M. I. Auslender and V. Yu. Irkhin, “Electron states in the s-f exchange model of a ferromagnetic semiconductor in the spin-wave region. II. Degenerate semiconductors,” J. Phys. C: Solid State Phys. 18, 3533–3545 (1985).

    Article  Google Scholar 

  41. V. Yu. Irkhin and M. I. Katsnelson, “Ground state and electron-magnon interaction in an itinerant ferromagnet: half-metallic ferromagnets,” J. Phys.: Condens. Matter 2, 7151 (1990).

    Google Scholar 

  42. V. Yu. Irkhin, M. I. Katsnelson, and A. V. Trefilov, “On the reconstruction of the conduction electron spectrum in metal-oxide superconductors owing to the interaction with coherent atomic displacements,” Phys. C 160, 397–410 (1989).

    Article  CAS  Google Scholar 

  43. M. I. Katsnelson and D. M. Edwards, “Correlation effects at the surface of an itinerant electron ferromagnet,” J. Phys.: Condens. Matter 4, 3289 (1992).

    Google Scholar 

  44. S. D. Kevan, Angle-Resolved Photoemission: Theory and Current Applications (Elsevier, Amsterdam, 1992).

    Google Scholar 

  45. R. Wiesendanger, H.-J. Guentherodt, G. Guentherodt, R. J. Cambino, and R. Ruf, “Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope,” Phys. Rev. Lett. 65, 247 (1990).

    Article  CAS  Google Scholar 

  46. L. Chioncel, M. I. Katsnelson, R. A. de Groot, and A. I. Lichtenstein, “Nonquasiparticle states in the half-metallic ferromagnet NiMnSb,” Phys. Rev. B 68, 144425 (2003).

    Article  Google Scholar 

  47. H. Fujiwara, et al., “Observation of intrinsic half-metallic behavior of CrO2(100) epitaxial films by bulk-sensitive spin-resolved PES,” J. Electron Spectrosc. Relat. Phenom. 220, 46–49 (2017).

    Article  Google Scholar 

  48. Y. Ohnuma, M. Matsuo, and S. Maekawa, “Spin transport in half-metallic ferromagnets,” Phys. Rev. B 94, 184405 (2016) .

    Article  Google Scholar 

  49. N. I. Kourov, V. V. Marchenkov, A. V. Korolev, K. A. Belozerova, and H. W. Weber, “Peculiarities of the electronic transport in Co2CrAl and Co2CrGa half-metallic ferromagnets,” Curr. Appl. Phys. 15, 839–843 (2015).

    Article  Google Scholar 

  50. N. I. Kourov, V. V. Marchenkov, V. G. Pushin, and K. A. Belozerova, “Electrical properties of ferromagnetic Ni2MnGa and Co2CrGa Heusler alloys,” J. Exp. Theor. Phys. 117, 121–125 (2013).

    Article  CAS  Google Scholar 

  51. C. Felser and G.H. Fecher, Spintronics: from Materials to Devices (Springer, New York, 2013).

    Book  Google Scholar 

  52. C. Felser and B. Hillebrands, “New materials with high spin polarization: half-metallic Heusler compounds,” J. of Physics D: Appl. Phys. 40, No. 6, E01 (2007).

    Article  Google Scholar 

  53. D. Bombor, C. G. F. Blum, O. Volkonskiy, S. Rodan, S. Wurmehl, C. Hess, and B. Buchner, “Half-metallic ferromagnetism with unexpectedly small spin splitting in the Heusler compound Co2FeSi,” Phys. Rev. Lett. 110, 066601 (2013).

    Article  Google Scholar 

  54. T. Block, C. Felser, G. Jakob, et al., “Large negative magnetoresistance effects in Co2Cr0.6Fe0.4Al,” J. Solid State Chem. 176, No. 2, 646–651 (2003).

    Article  CAS  Google Scholar 

  55. C. Felser, B. Heitkamp, F. Kronast, et al., “Investigation of a novel material for magnetoelectronics: Co2Cr0.6Fe0.4Al,” J. Phys.: Condens. Matter 15, No. 41, 7019–7027 (2003).

    CAS  Google Scholar 

  56. V. Irkhin and M. Katsnelson, “Temperature dependences of resistivity and magnetoresistivity for half-metallic ferromagnets,” Eur. Phys. J. B. 30, 481–486 (2002).

    Article  CAS  Google Scholar 

  57. K. Srinivas, M.M. Raja, and S. V. Kamat, “Effect of partial substitution of silicon by other sp-valent elements on structure, magnetic properties and electrical resistivity of Co2FeSi Heusler alloys,” J. Alloys Compd. 619, 177–185 (2015).

    Article  CAS  Google Scholar 

  58. V. V. Marchenkov, N. I. Kourov, and V. Yu. Irkhin, “Half-metallic ferromagnets and spin gapless semiconductors,” Phys. Met. Metallogr. 119, 1321–1324 (2018).

    Article  CAS  Google Scholar 

  59. N. I. Kourov, V. V. Marchenkov, K. A. Belozerova, and H. W. Weber, “Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) Heusler alloys,” J. Exp. Theor. Phys. 121, No. 5, 844–852 (2015).

    Article  CAS  Google Scholar 

  60. N. I. Kourov, V. V. Marchenkov, Yu. A. Perevozchikova, and H. W. Weber, “Galvanomagnetic properties of Heusler alloy Co2YAl (Y = Ti, V, Cr, Mn, Fe, Ni), Phys. Solid State 59, 63–69 (2017).

    Article  CAS  Google Scholar 

  61. N. I. Kourov, V. V. Marchenkov, Yu. A. Perevozchikova, and M. Eisterer, “Galvanomagnetic properties of Heusler alloy Co2FeZ (Z = Al, Si, Ga, Ge, In, Sn, Sb),” Phys. Solid State 59, 2352–2359 (2017).

    Article  CAS  Google Scholar 

  62. V. V. Marchenkov, V. Yu. Irkhin, Yu. A. Perevozchikova, P. B. Terent’ev, A. A. Semyannikova, E. B. Marchenkova, and M. Eisterer, “Kinetic properties and half-metallic magnetism in Mn2YAl Heusler alloys,” J. Exp. Theor. Phys. 128, No. 6, 919–925 (2019).

    Article  CAS  Google Scholar 

  63. V. V. Marchenkov, Yu. A. Perevozchikova, A. A. Semiannikova, P. S. Korenistov, E. B. Marchenkova, and A. N. Domozhirova, “Features of the electroresistivity, magnetic and galvanomagnetic characteristics in Co2MeSi Heusler alloys,” Low Temp. Phys.  47, 61–68 (2021).

  64. J. Kuebler, J. R. Williams, and C. B. Sommers, “Formation and coupling of magnetic moments in Heusler alloys,” Phys. Rev. B 28, 1745 (1983).

    Article  CAS  Google Scholar 

  65. S. V. Halilov and E. T. Kulatov,” Electron and magnetooptical properties of half-metallic ferromagnets and uranium monochalcogenide,” J. Phys.: Cond. Mat. 3, 6363–6374 (1991);

    CAS  Google Scholar 

  66. Zh. Eksp. Theor. Fiz. 98, 1778 (1989).

    Google Scholar 

  67. S. Matar, P. Mohn, G. Demazeau, and B. Siberchicot, “The calculated electronic and magnetic structures of Fe4N and Mn4N,” J. Phys. France 49, 1761–1768 (1988).

    Article  CAS  Google Scholar 

  68. K. Schwarz, “CrO2 predicted as a half-metallic ferromagnet,” J. Phys. F: Met. Phys. 16, L211–L215 (1986).

    Article  Google Scholar 

  69. S. Fujii, S. Sugimura, S. Ishida, and S. Asano, “Hyperfine fields and electronic structures of the Heusler alloys Co2MnX (X = Al, Ga, Si, Ge, Sn),” J. Phys.: Cond. Matter 2, 8583–8589 (1990).

    CAS  Google Scholar 

  70. S. Ghosh and S. Ghosh, “Systematic understanding of half-metallicity of ternary compounds in Heusler and inverse Heusler structures with 3d and 4d elements,” Phys. Scr. 94, 125001 (2019).

    Article  CAS  Google Scholar 

  71. I. Galanakis, P. Mavropoulos, and P. H. Dederichs, “Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles,” Phys. D: Appl. Phys. 39, 765–775 (2006).

    Article  CAS  Google Scholar 

  72. X. Q. Chen, R. Podloucky, and P. Rogl, “Ab initio prediction of half-metallic properties for the ferromagnetic Heusler alloys Co2MSi (M = Ti, V, Cr),” J. Appl. Phys. 100, 113901 (2006).

    Article  Google Scholar 

  73. Y. Miura, M. Shirai, and K. Nagao, “Ab initio study on stability of half-metallic Co-based full-Heusler alloys,” J. Appl. Phys. 99, 08J112 (2006).

  74. K. Ozdogan, E. Sasioglu, and I. Galanakis, “Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin gapless and magnetic semiconductors,” J. Appl. Phys. 113, 193903 (2013).

    Article  Google Scholar 

  75. A. Kundu, S. Ghosh, R. Banerjee, S. Ghosh, and B. Sanyal, “New quaternary half-metallic ferromagnets with large Curie temperatures,” Sci. Rep. 7, 1803 (2017).

    Article  Google Scholar 

  76. L. Bainsla, A. I. Mallick, A. A. Coelho, A. K. Nigam, B. S. D. Ch. S.Varaprasad, Y.K. Takahashi, A. Alam, K.G. Suresh, and K. Hono, “High spin polarization and spin splitting in equiatomic quaternary CoFeCrAl Heusler alloy,” J. Magn. Magn. Mater. 394, 82 (2015).

    Article  CAS  Google Scholar 

  77. A. Bahnes, A. Boukortt, H. Abbassa, D. E. Aimouch, R. Hayn, and A. Zaoui, “Half-metallic ferromagnets behavior of a new quaternary Heusler alloys CoFeCrZ (Z = P, As and Sb): Ab-initio study,” J. Alloys Compd. 731, 1208–1213 (2018).

    Article  Google Scholar 

  78. A. V. Sokolov, Optical Properties of Metals (GIFML, Moscow, 1961).

    Google Scholar 

  79. M. M. Kirillova, A. A. Makhnev, E. I. Shreder, V. P. Dyakina, and N. B. Gorina, “Interband Optical Absorption and Plasma Effects in Half-Metallic XMnY Ferromagnets,” Phys. Status Solidi B 187, 231–240 (1995).

    Article  CAS  Google Scholar 

  80. E. I. Shreder, A. D. Svyazhin, and K. A. Belozerova, “Optical properties of heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, Co2CrGa,” Phys. Met. Metallogr. 114, No. 5, 904–909 (2013).

    Article  Google Scholar 

  81. H. C. Kandpal, G. H. Fecher, and C. Felser, “Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds,” J. Phys. D: Appl. Phys. 40, 1507–1523 (2007).

    Article  CAS  Google Scholar 

  82. I. Galanakis and Ph. Mavropoulos, “Spin-polarization and electronic properties of half-metallic Heusler alloys calculated from first principles,” J. Phys.: Condens. Matter 19, 315213 (2007).

    CAS  Google Scholar 

  83. W. Feng, X. Fu, C. Wan, Zh. Yuan, X. Han, N. Van Quang, and S. Cho, “Spin gapless semiconductor like Ti2MnAl film as a new candidate for spintronics application,” Phys. Status Solidi RRL 9, 641 (2015).

    Article  CAS  Google Scholar 

  84. G. Z. Xu, E. K. Liu, Y. Du, G. J. Li, G. D. Liu, W. H. Wang, and G. H. Wu, “A new spin gapless semiconductors family: Quaternary Heusler compounds,” EPL 102, 17007 (2013).

    Article  Google Scholar 

  85. R. Dhakal, S. Nepal, R. B. Ray, R. Paudel, and G. C. Kaphle, “Effect of doping on SGS and weak half-metallic properties of inverse Heusler Alloys,” J. Magn. Magn. Mater. 503, 166588 (2020).

    Article  CAS  Google Scholar 

  86. Q. Gao, I. Opahle, and H. Zhang, “High-throughput screening for spin gapless semiconductors in quaternary Heusler compounds,” Phys. Rev. Mater. 3, 024410 (2019).

    Article  CAS  Google Scholar 

  87. D. Rani, Enamullah L. Bainsla, K. G. Suresh, and A. Alam, “Spin gapless semiconducting nature of Co-rich Co1 + xFe1 − xCrGa,” Phys. Rev. B 99, 104429 (2019).

    Article  CAS  Google Scholar 

  88. L. Bainsla, A. I. Mallick, M. M. Raja, A. A. Coelho, A. K. Nigam, D. D. Johnson, A. Alam, and K. G. Suresh, “Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment,” Phys. Rev. B 92, 045201 (2015).

    Article  Google Scholar 

  89. V. Barwal, N. Behera, S. Husain, N. K. Gupta, S. Hait, L. Pandey, V. Mishra, and S. Chaudhary, “Spin gapless semiconducting behavior in inverse Heusler Mn2 – xCo1 + xAl (0 ≤ x ≤ 1.75) thin films,” J. Magn. Magn. Mater. 518, 167404 (2021).

    Article  Google Scholar 

  90. L. Bainsla, A. I. Mallick, M. M. Raja, A. K. Nigam, B. S. D. Ch. S. Varaprasad, Y.K. Takahashi, A. Alam, K.G. Suresh, and K. Hono, “Spin gapless semiconducting behavior in equiatomic quaternary CoFeMnSi Heusler alloy,” Phys. Rev. B 91, 104408 (2015).

    Article  Google Scholar 

  91. K. Ozdogan and I. Galanakis, “Stability of spin gapless semiconducting behavior in Ti2CoSi, Ti2MnAl, and Ti2VAs Heusler compounds,” Phys. Rev. Mater. 5, 024409 (2021).

    Article  CAS  Google Scholar 

  92. I. Galanakis, K. Ozdogan, and E. Sasioglu, “Spin-filter and spin gapless semiconductors: The case of Heusler compounds,” AIP Adv. 6, 055606 (2016).

    Article  Google Scholar 

  93. E. I. Shreder, A. A. Makhnev, A. V. Lukoyanov, and V. V. Marchenkov, “Electron structure and optical properties of the Mn1.8Co1.2Al alloy and spin gapless semiconductor state,” Phys. Met. Metallogr. 119, No. 11, 1127–1131 (2018).

    Article  Google Scholar 

  94. X. D. Xu, Z. X. Chen, Y. Sakuraba, et al., “Microstructure, magnetic and transport properties of a Mn2CoAl Heusler compound,” Acta Mater. 176, 33–42 (2019).

    Article  CAS  Google Scholar 

  95. H. Fu, Y. Li, L. Ma, et al., “Structures, magnetism and transport properties of the potential spin gapless semiconductor CoFeMnSi alloy,” J Magn. Magn. Mater. 473, 16–20 (2019).

    Article  CAS  Google Scholar 

  96. P. Narang, C. A. C. Garcia, and C. Felser, “The topology of electronic band structures,” Nat. Mater. 20, 293–300 (2021).

    Article  CAS  Google Scholar 

  97. B. Yan and C. Felser, “Topological materials: Weyl semimetals,” Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Article  Google Scholar 

  98. X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  Google Scholar 

  99. M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  Google Scholar 

  100. N. P. Armitage, E. J. Mele, and A. Vishwanath, “Weyl and Dirac semimetals in three-dimensional solids,” Rev. Mod. Phys. 90, 015001 (2018).

    Article  CAS  Google Scholar 

  101. S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a Weyl fermion semimetal and topological Fermi arcs,” Science 349, 613–617 (2015).

    Article  CAS  Google Scholar 

  102. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314, 1757–1761 (2006).

    Article  CAS  Google Scholar 

  103. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).

    Article  Google Scholar 

  104. S. Chadov, X. Qi, J. Kubler, G. H. Fecher, C. Felser, and S. C. Zhang, “Tunable multifunctional topological insulators in ternary Heusler compounds,” Nat. Mater. 9, 541–545 (2010).

    Article  CAS  Google Scholar 

  105. H. Lin, L. A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z. Hasan, “Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena,” Nat. Mater. 9, 546–549 (2010).

    Article  CAS  Google Scholar 

  106. K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan, H. Huang, H. Zhang, Z. Xu, J. Denlinger, A. Fedorov, H. Yang, W. Duan, H. Yao, Y. Wu, S. Fan, H. Zhang, X. Chen, and S. Zhou, “Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2,” Nat. Phys. 12, 1105–1110 (2016).

    Article  CAS  Google Scholar 

  107. Y. Wu, D. Mou, N. H. Jo, K. Sun, L. Huang, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, “Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2,” Phys. Rev. B 95, 121113(R) (2016).

  108. Z. Wang, et al., “Time-reversal-breaking Weyl fermions in magnetic Heusler alloys,” Phys. Rev. Lett. 117, 236401 (2016).

    Article  Google Scholar 

  109. J. Kubler and C. Felser, “Weyl points in the ferromagnetic Heusler compound Co2MnAl,” Europhys. Lett. 114, 47005 (2016).

    Article  Google Scholar 

  110. Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, “Three-dimensional Dirac semimetal and quantum transport in Cd3As2,” Phys. Rev. B 88, 125427 (2013).

    Article  Google Scholar 

  111. Z. K. Liu, et al., “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343, 864–867 (2014).

    Article  CAS  Google Scholar 

  112. J. Liu and D. Vanderbilt, “Weyl semimetals from noncentrosymmetric topological insulators,” Phys. Rev. B 90, 155316 (2014).

    Article  Google Scholar 

  113. V. Yu. Irkhin and Yu. N. Skryabin, “Electronic states and the anomalous Hall effect in strongly correlated topological systems,” J. Exp. Theor. Phys. 133, 116–123 (2021).

    Article  CAS  Google Scholar 

  114. T. Suzuki, R. Chisnell, A. Devarakonda, et al., “Large anomalous Hall effect in a half-Heusler antiferromagnet,” Nat. Phys. 12, 1119–1123 (2016).

    Article  CAS  Google Scholar 

  115. I. Belopolski, K. Manna, D. S. Sanchez, et al., “Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet,” Science 365, 1278–1281 (2019).

    Article  CAS  Google Scholar 

  116. H. Yang, Y. Sun, Y. Zhang, et al., “Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn,” New J. Phys. 19, 015008 (2017).

    Article  Google Scholar 

  117. T. Ogasawara, J.-Y. Kim, Y. Ando, and A. Hirohata, “Structural and antiferromagnetic characterization of noncollinear D019 Mn3Ge polycrystalline film,” J. Magn. Magn. Mater. 473, 7–11 (2019).

    Article  Google Scholar 

  118. Y. Zhang, Y. Sun, H. Yang, et al. “Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt),” Phys. Rev. B 95, 075128 (2017).

    Article  Google Scholar 

  119. Y. Yanagi, J. Ikeda, K. Fujiwara, et al., “First-principles investigation of magnetic and transport properties in hole-doped shandite compounds Co3InxSn2 – xS2,” Phys. Rev. B 103, 205112 (2021).

    Article  CAS  Google Scholar 

  120. S. Chadov, S. C. Wu, C. Felser, and I. Galanakis, “Stability of Weyl points in magnetic half-metallic Heusler compounds,” Phys. Rev. B 96, 024435 (2017).

    Article  Google Scholar 

  121. W. Shi and L. Muechler, and K. Manna, “Prediction of a magnetic Weyl semimetal without spin-orbit coupling and strong anomalous Hall effect in the Heusler compensated ferrimagnet Ti2MnAl,” Phys. Rev. B 97, 060406 (2018).

    Article  CAS  Google Scholar 

  122. S. N. Guin, K. Manna, J. Noky, et al., “Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa,” NPG Asia Mater. 11, 16 (2019).

    Article  CAS  Google Scholar 

  123. B. Ernst, R. Sahoo, Y. Sun, et al., “Anomalous Hall effect and the role of Berry curvature in Co2TiSn Heusler films,” Phys. Rev. B 100, 054445 (2019).

    Article  CAS  Google Scholar 

  124. P. Chaudhary, K. K. Dubey, G. K. Shukla, et al., “Role of chemical disorder in tuning the Weyl points in vanadium doped Co2TiSn,” arXiv:2102.13389v1 [cond-mat.mtrl-sci] (2021).

  125. L. Leiva, S. Granville, Y. Zhang, et al., “Giant spin Hall angle in the Heusler alloy Weyl ferromagnet Co2MnGa,” Phys. Rev. B 103, L041114 (2021).

    Article  CAS  Google Scholar 

  126. L. Xu, X. Li, L. Ding, et al., “Anomalous transverse response of Co2MnGa and universality of the room-temperature αAij/σAij ratio across topological magnets,” Phys. Rev. B 101, 180404 (2020).

    Article  CAS  Google Scholar 

  127. C.-Y. Huang, H. Aramberri, H. Lin, and N. Kioussis, “Noncollinear magnetic modulation of Weyl nodes in ferrimagnetic Mn3Ga, Phys. Rev. B 102, 094403 (2020).

    Article  CAS  Google Scholar 

  128. K. Sumida, Y. Sakuraba, K. Masuda, et al., “Spin-polarized Weyl cones and giant anomalous Nernst effect in ferromagnetic Heusler films,” Commun. Mater. 1, 89 (2020).

    Article  Google Scholar 

  129. T. Kono, M. Kakoki, T. Yoshikawa, et al., “Visualizing half-metallic bulk band structure with multiple Weyl cones of the Heusler ferromagnet,” Phys. Rev. Lett. 125, 216403 (2020).

    Article  CAS  Google Scholar 

  130. S. Roy, R. Singha, A. Ghosh, A. Pariari, and P. Mandal, “Anomalous Hall effect in the half-metallic Heusler compound Co2TiX (X = Si, Ge),” Phys. Rev. B 102, 085147 (2020).

    Article  CAS  Google Scholar 

  131. O. Amrich, M. ElA. Monir, H. Baltach, S. B. Omran, X.-W. Sun, X. Wang, Y. Al-Douri, A. Bouhemadou, and R. Khenata, “Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study,” J. Supercond. Nov. Magn. 3, No. 1, 241–250 (2018).

    Article  Google Scholar 

  132. R. Jain, N. Lakshmi, V. K. Jain, V. Jain, A. R. Chandra, and K. Venugopalan, “Electronic structure, magnetic and optical properties of Co2TiZ (Z = B, Al, Ga, In) Heusler alloys,” J. Magn. Magn. Mater. 448, 278–286 (2018).

    Article  CAS  Google Scholar 

  133. L. Sukhender, L. Mohan, S. Kumar, D. Sharma, and A. S. Verma, “Structural, electronic, optical and magnetic properties of Co2CrZ (Z = Al, Bi, Ge, Si) Heusler compounds,” East Eur. J. Phys. 2, 69–80 (2020).

  134. Y. Li, L. Qin, S. Y. Huang, X. M. Zhang, and L. W. Li, “Electronic structure, magnetic properties and martensitic transformation of Ga2MnTM (TM = Sc, Y, Lu) Heusler alloys,” J. Magn. Magn. Mater. 529, 167891 (2021).

    Article  CAS  Google Scholar 

  135. M. Shakil, S. Mushtaq, I. Zeba, S. S. A. Gillani, M. I. Khan, H. Arshad, and M. Rafique, “Structural, electronic, magnetic and thermoelectric properties of full Heusler alloys Co2YZ (Z = S, Ge, Se): A first principles calculation,” Phys. B: Condens. Matter 602, 412558 (2021).

    Article  CAS  Google Scholar 

  136. A. A. Mubarak, S. Saad, F. Hamioud, and M. Al-Elaimi, “Structural, thermo-elastic, electro-magnetic and thermoelectric attributes of quaternary CoNbMnX (X = Al, Si) Heusler alloys,” Solid State Sci. 111, 106397 (2021).

    Article  CAS  Google Scholar 

  137. Y. El Krimi, R. Masrour, and A. Jabar, “A comparative study of structural electronic and magnetic properties of full-Heuslers Co2MnZ (Z = Al, Ge and Sn),” J. Mol. Struct. 1220, 128707 (2020).

    Article  CAS  Google Scholar 

  138. V. V. Marchenkov, Yu. A. Perevozchikova, N. I. Kourov, V. Yu. Irkhin, M. Eisterer, and T. Gao, “Peculiarities of the electronic transport in half-metallic Co-based Heusler alloys,” J. Magn. Magn. Mater. 459, 211–214 (2018).

    Article  Google Scholar 

  139. V. V. Marchenkov, V. Yu. Irkhin, and Yu. A. Perevozchikova, “Peculiarities of electronic transport and magnetic state in half-metallic ferromagnetic and spin gapless semiconducting Heusler alloys,” Phys. Met. Metallogr. 120, 1325–1332 (2019).

    Article  CAS  Google Scholar 

  140. Yu. A. Perevozchikova, A. A. Semyannikova, A. N. Domozhirova, P. B. Terent’ev, E. B. Marchenkova, E. I. Patrakov, M. Eisterer, P. S. Korenistov, and V. V. Marchenkov, “Experimental observation of anomalies in the electrical, magnetic, and galvanomagnetic properties of cobalt-based Heusler alloys with varying transition elements,” Low Temp. Phys. 45, No. 7, 789–794 (2019).

    Article  CAS  Google Scholar 

  141. A. A. Semiannikova, Yu. A. Perevozchikova, V. Yu. Irkhin, E. B. Marchenkova, P. S. Korenistov, and V. V. Marchenkov, “Electronic, magnetic and galvanomagnetic properties of Co-based Heusler alloys: possible states of a half-metallic ferromagnet and spin gapless semiconductor,” AIP Adv. 11, 15139 (2021).

    Article  CAS  Google Scholar 

  142. H. Luo, Z. Zhu, L. Ma, et al., “Effect of site preference of 3d atoms on the electronic structure and half-metallicity of Heusler alloy Mn2YAl,” J. Phys. D: Appl. Phys. 41, 055010 (2008).

    Article  Google Scholar 

  143. S. V. Faleev, Y. Ferrante, J. Jeong, M. G. Samant, B. Jones, and S. S. P. Parkin, “Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance,” Phys. Rev. Materials 1, 024402 (2017).

    Article  Google Scholar 

  144. L. Makinistian, M. M. Faiz, R. P. Panguluri, B. Balke, S. Wurmehl, C. Felser, et al., “On the half-metallicity of Co2FeSi Heusler alloy: an experimental and ab initio study,” Phys. Rev. B 87, 220402 (2013).

    Article  Google Scholar 

  145. M. E. Jamer, Y. J. Wang, G. M. Stephen, et al., “Compensated ferrimagnetism in the zero-moment Heusler alloy Mn3Al,” Phys. Rev. Appl. 7, 064036 (2017).

    Article  Google Scholar 

  146. S. Chatterjee, P. Dutta, P. Singha, S. Giri, and A. Banerjee, “Emergence of compensated ferrimagnetic state in Mn2 – xRu1 + xGa (x = 0.2, 0.5) alloys,” J. Magn. Magn. Mater. 532, 167956 (2021).

    Article  CAS  Google Scholar 

  147. E. I. Shreder, A. V. Lukoyanov, and V. V. Marchenkov, “Optical properties and electronic structure of alloys Co2Cr1 – xFexAl (x = 0, 0.4, 0.6, 1.0),” Phys. Solid State 58, No. 1, 164–169 (2016).

    Article  CAS  Google Scholar 

  148. V. D. Buchelnikov, V. V. Sokolovskiy, O. N. Miroshkina, D. R. Baigutlin, M. A. Zagrebin, B. Barbiellini, and E. Lahderanta, “Prediction of a Heusler alloy with switchable metal-to-half-metal behavior,” Phys. Rev. B 103, 054414 (2021).

    Article  CAS  Google Scholar 

  149. Z. P. Hou, Y. Wang, G. Z. Xu, X. M. Zhang, E. K. Liu, W. Q. Wang, Z. Y. Liu, X. K. Xi, W. H. Wang, and G. H. Wu, “Transition from semiconducting to metallic-like conducting and weak antilocalization effect in single crystals of LuPtSb,” Appl. Phys. Lett. 10, 102102 (2015).

    Article  Google Scholar 

  150. B. M. Ludbrook, G. Dubuis, A. H. Puichaud, B. J. Ruck, and S. Granville, “Nucleation and annihilation of skyrmions in Mn2CoAl observed through the topological Hall effect,” Sci. Rep. 7, 13620 (2017).

    Article  CAS  Google Scholar 

  151. S. Ghosh, “Insights into the half-metallicity in Heusler compounds with 3d and 4d transition metal elements,” PhD Thesis (Indian Institute of Technology Guwahati, Asam, 2019).

  152. A. Ahmad, S. K. Srivastava, and A.K. Das, “Phase stability and the effect of lattice distortions on electronic properties and half-metallic ferromagnetism of Co2FeAl Heusler alloy: an ab initio study,” J. Phys.: Condens. Matter 32, 415606 (2020).

    CAS  Google Scholar 

  153. P. O. Adebambo, B. I. Adetunji, J. A. Olowofela, J. A. Oguntuase, and G. A. Adebayo, “Prediction of metallic and half-metallic structure and elastic properties of Fe2Ti1 – xMnxAl Heusler alloys,” Phys. B: Condens. Matter 485, 103–109 (2016).

    Article  CAS  Google Scholar 

  154. S. M. Azar, B. A. Hamad, and J. M. Khalifeh, “Structural, electronic and magnetic properties of Fe3 – xMnxZFe3 – xMnxZ (Z = Al, Ge, Sb) Heusler alloys,” J. Magn. Magn. Mater. 324, 1776–1785 (2012).

    Article  CAS  Google Scholar 

  155. N. V. Uvarov, Y. V. Kudryavtsev, A. F. Kravets, A. Ya. Vovk, R. P. Borges, M. Godinho, and V. Korenivski, “Electronic structure, optical and magnetic properties of Co2FeGe Heusler alloy films,” J. Appl. Phys. 112, 063909 (2012).

    Article  Google Scholar 

  156. S. Dash, A. V. Lukoyanov, N. Nancy, D. Mishra, U. P. M. Rasi, R. B. Gangineni, M. Vasundhara, and M. Patra, “Structural stability and magnetic properties of Mn2FeAl alloy with a β-Mn structure,” J. Magn. Magn. Mater. 513, 167205 (2020).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to our colleagues and co-authors M.I. Katsnelson, Yu.N. Skryabin, N.G. Bebenin, E.I. Shreder, A.V. Lukoyanov, Yu.A. Perevozchikova, V.G. Pushin, and E.B. Marchenkova for valuable discussions, as well as A.N. Domozhirova, A.A. Semiannikova, P.S. Korenistov, and S.M. Emel’yanova for help in completing this review.

Funding

This work was carried out as part of the state assignment of the Ministry of Education and Science of the Russian Federation (topic “Spin,” no. AAAA-A18-118020290104-2, and “Quantum,” no. AAAA-A18-118020190095-4) and was supported by the Russian Foundation for Basic Research (project no. 20-12-50004) and the Government of the Russian Federation (resolution no. 211, contract no. 02.A03.21.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Marchenkov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenkov, V.V., Irkhin, V.Y. Half-Metallic Ferromagnets, Spin Gapless Semiconductors, and Topological Semimetals Based on Heusler Alloys: Theory and Experiment. Phys. Metals Metallogr. 122, 1133–1157 (2021). https://doi.org/10.1134/S0031918X21120061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21120061

Keywords:

Navigation