Skip to main content
Log in

Study of Structural, Elastic and Thermodynamic Properties of Metal Carbides MC (M = Ir, Rh and Ru) Using First-Principles Calculations

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

DFT calculations of the metal carbides MC (M = Ir, Rh and Ru) compounds in the rock-salt RS (B1) and Zinc Blende ZB (B3) phases were performed over the structural, elastic and thermodynamic properties. The exchange-correlation functional employed is the generalized gradient approximation of Wu and Cohen (GGA-WC). The structural parameters such as lattice constants (a0), bulk moduli (B0) and its pressure derivative (\(B_{0}^{'}\)) were calculated, and the values obtained are in excellent agreement with the experimental and theoretical results. The elastic constants (C11, C12 and C44), Shear modulus (G) and Young’s modulus (E) have also been computed and then compared with the theoretical data reported in the literature. The thermodynamic properties of these compounds were estimated, and the effects of temperature and pressure upon the heat capacities, expansion coefficients and bulk modulus. The longitudinal, transverse and average sound velocities and Debye temperature of these compounds have also been calculated and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Z. Mei-Guang, Y. Hai-Yan, Z. Gang-Tai, and W. Hui, “The ground-state structure and physical properties of RuC: first-principles calculations,” J. Chin. Phys. B 21, No. 7 (2012).

  2. N. R. Sanjay Kumar, N. V. Chandra Shekar, N. Subramanian, M. Sekar, and P. C. Sahu, “High pressure synthesis of ruthenium carbide,” Proceedings of the 53rd DAE Solid State Physics Symposium, Mumbai, 2008.

  3. Yu. Zh. Tuleushev, V. N. Volodin, E. A. Zhakanbaev, and B. Alimzhan, “Structure and phase composition of deposited tantalum–carbon films,” Phys. Met. Metallogr. 117, 789–794 (2016). https://doi.org/10.1134/S0031918X16060120

    Article  CAS  Google Scholar 

  4. Z. Zhao, M. Wang, L. Cui, J. He, D. Yu, and Y. Tian, “Semiconducting superhard ruthenium monocarbide,” J. Phys. Chem. C 114, 9961–9964 (2010).

    Article  CAS  Google Scholar 

  5. C. Z. Fan, S. Y. Zeng, Z. J. Zhan, R. P. Liu, W. K. Wang, P. Zhang, and Y. G. Yao, “Low compressible noble metal carbides with rock-salt structure: Ab initio total energy calculations of the elastic stability,” Appl. Phys. Lett. 89, 071913 (2006).

    Article  Google Scholar 

  6. Y. X. Wang, “Ultra-incompressible and hard technetium carbide and rhenium carbide: First-principles prediction,” Phys. Status Solidi RRL 2, 126–128 (2008).

    Article  CAS  Google Scholar 

  7. H. Y. Gou, L. Hou, J. W. Zhang, and F. M. Gao, Appl. Phys. Lett. 92, 241901 (2008).

    Article  Google Scholar 

  8. I. G. Zhevtun, P. S. Gordienko, Yu. N. Kul’chin, E. P. Subbotin, S. B. Yarusova and A. V. Golub, “Effects of Doping of composite Ti-TiC coatings with transition and valve metals on their structure and mechanical properties,” Phys. Met. Metallogr. 120, 25–31 (2019). https://doi.org/10.1134/S0031918X18100150

    Article  CAS  Google Scholar 

  9. A. I. Ul’yanov, A. A. Chulkina, V. A. Volkov, A. L. Ul’yanov, and A. V. Zagainov, “Structure and magnetic properties of mechanically synthesized (Fe1 – xNix)75C25 nanocomposites,” Phys. Met. Metallogr. 118, 691–699 (2017). https://doi.org/10.1134/S0031918X17050143

    Article  Google Scholar 

  10. S. I. Ryabtsev, V. F. Bashev, A. I. Belkin and A. S. Ryab-tsev, “Structure and properties of ion- plasma deposited Ni–C films in a metastable state,” Phys. Met. Metallogr. 102, 305–308 (2006). https://doi.org/10.1134/S0031918X06090109

    Article  Google Scholar 

  11. M. Rabah, D. Rached, M. Ameri, R. Khenata, A. Zenati, and N. Moulay, “Theoretical study of ground state and high-pressure phase of platinum carbide,” J. Phys. Chem. Solids 69, 2907–2910 (2008).

    Article  CAS  Google Scholar 

  12. P. F. McMillan, “New materials from high-pressure experiments,” Nat. Mater. 1, 19–25 (2002).

    Article  CAS  Google Scholar 

  13. M. Lee and R. S. Gilmore, “Single crystal elastic constants of tungsten monocarbide,” J. Mater. Sci. 17, 2657–2660 (1982).

    Article  CAS  Google Scholar 

  14. K. Strossner, M. Cardona, and W. J. Choyke, “High pressure X-ray investigations on 3C–SiC,” Solid State Commun. 63, 113–114 (1987).

    Article  Google Scholar 

  15. N. A. Dubrovinskaia, L. S. Dubrovinsky, S. K. Saxena, R. Ahuja, and B. Johansson, “High-pressure study of titanium carbide,” J. Alloys Compd. 289, 24–27 (1999).

    Article  CAS  Google Scholar 

  16. R. Maizi, A.-G. Boudjahem, and M. Boulbazine, “First-Principles investigations on structural, elastic, and thermodynamic properties of CaX (X = S, Se, and Te) under pressure,” Russ. J. Phys. Chem. A 93, 2726–2734 (2019).

    Article  Google Scholar 

  17. M. Manikandan, R. Rajeswarapalanichamy, and K. Iyakutti, “Pressure—induced structural phase transition in transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt): a DFT study,” Philos. Mag., 541–559 (2017).

  18. S. Ono, T. Kikegawa, and Y. Ohishi, Solid State Commun. 133, 55 (2005).

    Article  CAS  Google Scholar 

  19. Z. Zhao, L. Xu, M. Wang, L. Cui, L. Wang, J. He, Z. Liu, and Y. Tian, “Prediction of a conducting hard ductile cubic IrC,” Phys. Status Solidi RRL 4, 230–232 (2010).

    Article  CAS  Google Scholar 

  20. J. C. Zheng, “Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, and OsN,” Phys. Rev. B 72, 052105 (2005).

    Article  Google Scholar 

  21. X. Gonze, J. M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J. Y. Raty, and D. C. Allan, Comput. Mater. Sci. 25, 478 (2002).

    Article  Google Scholar 

  22. X. Gonze, B. Amadon, P. M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, et al., Comput. Phys. Commun. 180, 2582 (2009).

    Article  CAS  Google Scholar 

  23. Z. Wu and R. E. Cohen, “More accurate generalized gradient approximation for solids,” Phys. Rev. B 73, 235116 (2006).

    Article  Google Scholar 

  24. A. Shaukat, Y. Saeed, N. Ikram, and H. Akbarzadeh, “First principles calculations of structural, electronic and optical properties of various phases of CaS,” Eur. Phys. J. B 62, 439–446 (2008).

    Article  CAS  Google Scholar 

  25. Z. Ping, L. Zhifeng, W. Xinqiang, Z. Mu, H. Chenghua, Z. Zhou, and W. Jinghe, “First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure,” J. Phys. Chem. Solids 75, 662–669 (2014).

    Article  Google Scholar 

  26. L. Liu, Y. Bi, J. Xu, X. Chen, Phys. B 405, 2175 (2010).

    Article  CAS  Google Scholar 

  27. N. Munjal, V. Sharma, G. Sharma, V. Vyas, B. K. Sharma, and J. E. Lowther, Phys. Scr. 84, 035704 (2011).

    Article  Google Scholar 

  28. M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G. M. Rignanese, “The Pseudo Dojo: Training and grading a 85 element optimized norm-conserving pseudopotential table,” Comput. Phys. Comm. 226, 39–54 (2018).

    Article  CAS  Google Scholar 

  29. H. J. Monkhorst and J. D. Park, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  30. F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1947).

    Article  Google Scholar 

  31. A. Otero de la Rosa, D. Abbasi-Pérez, and V. Luaña, Comput. Phys. Commun. 182, 2232 (2011).

    Article  Google Scholar 

  32. Xiao-Li Yuan, Mi-An Xue, Wen Chen, Tian-Qing An, “First-principles study of structural, elastic, electronic, magnetic and thermoproperties of Ni2ZrX (X = Sn, Sb) Heusler alloys under pressure,” J. Comput. Mater. Sci. 82, 76–85 (2014).

    Article  CAS  Google Scholar 

  33. L. Kleinman, Phys. Rev. B 12, 2614 (1962).

    Article  Google Scholar 

  34. E. Johnston, G. Keeler, R. Rollins and S. Spicklemeire, “Solid State Physics Simulations,” in A Consortium for Upper Level Physics Software (Wiley, New York, 1996).

    Google Scholar 

  35. O. L. Anderson, J Phys Chem Solids 24, 909 (1963).

    Article  CAS  Google Scholar 

  36. K. K. Korir, G. O. Amolo, N. W. Makau, and D. P. Joubert, “First-principle calculations of the bulk properties of 4d transition metal carbides and nitrides in the rocksalt, zinc blende and wurtzite structures,” Diamond and Relat. Mater. 20, 157–164 (2011).

    Article  CAS  Google Scholar 

  37. A. F. Guillermet, J. Haglund, and G. Grimvall, “Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure,” Phys. Rev. B 45, 11557–11567 (1992).

    Article  Google Scholar 

  38. N. I. Medvedeva and A. L. Ivanovskii, “First-principles study of structural, elastic, and electronic properties of M23C6 and MC carbides (M = Ru, Rh, Pd, Os, Ir, and Pt),” Phys. Status Solidi B 251, 148–154 (2013).

    Article  Google Scholar 

  39. V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, “Trends in stability, elastic and electronic properties of cubic Rh, Ir, Pd and Pt carbides depending on carbon content: MC versus M4C from first-principles calculations,” J. Phys. Chem. Solids 71, 803–809 (2010).

    Article  CAS  Google Scholar 

  40. J. Yang, F. Gao, “First principles calculations of mechanical properties of cubic 5d transition metal monocarbides,” Phys. B 407, 3527–3534 (2012).

    Article  CAS  Google Scholar 

  41. H. R. Soni, S. K. Gupta, and P. K. Jha, “Ab initio total energy calculation of the dynamical stability of noble metal carbides,” Phys. B 406, 3556 –3561 (2011).

    Article  CAS  Google Scholar 

  42. B. Abidri, M. Rabah, D. Rached, H. Baltache, H. Rached, I. Merzoug, and S. Djili, “Full potentialcalculation of structural, elastic properties and high-pressure phase of binary noble metal carbide: ruthenium carbide,” J. Phys. Chem. Solids 71, 1780–1784 (2010).

    Article  CAS  Google Scholar 

  43. H. G. Pillai, A. K. Madam, S. Natarajan, S. Chandra, and V. M. Cheruvalath, “Pressure-induced variation of structural, elastic, vibrational, electronic, thermodynamic properties and hardness of ruthenium carbides,” J. Phys. Chem. Solids 94, 47–58 (2016).

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ksouri.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksouri, R., Maizi, R., Boudjahem, AG. et al. Study of Structural, Elastic and Thermodynamic Properties of Metal Carbides MC (M = Ir, Rh and Ru) Using First-Principles Calculations. Phys. Metals Metallogr. 123, 1376–1386 (2022). https://doi.org/10.1134/S0031918X21101129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21101129

Keywords:

Navigation